Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 050201    DOI: 10.1088/0256-307X/26/5/050201
GENERAL |
A Hierarchy of New Nonlinear Evolution Equations Associated with a 3×3 Matrix Spectral Problem
GENG Xian-Guo, LI Fang
Department of Mathematics, Zhengzhou University, Zhengzhou 450052
Cite this article:   
GENG Xian-Guo, LI Fang 2009 Chin. Phys. Lett. 26 050201
Download: PDF(204KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A 3×3 matrix spectral problem with three potentials and the corresponding hierarchy of new nonlinear evolution equations are proposed. Generalized Hamiltonian structures for the hierarchy of nonlinear evolution equations are derived with the aid of trace identity.
Keywords: 02.30.Jr     
Received: 01 December 2008      Published: 23 April 2009
PACS:  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/050201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/050201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GENG Xian-Guo
LI Fang
[1] Gardner C, Greene J, Kruskal M and Miura R 1967 Phys. Rev. Lett. 19 1095
[2] Hirota R 1973 J. Phys. Soc. Japan 35 289
[3] Toda M 1970 Prog. Theor. Phys. Suppl. 45 1974
[4] Zakharov V, Musher S and Rubenshik A 1974 Sov. Phys.JETP Lett. 19 151
[5] Ablowitz M J and Segur H 1981 Solitons and theInverse Scattering Transform (Philadelphia, PA: SIAM)
[6] Novikov S, Manakov S V, Pitaevskii L P and Zakharov V E1984 Theory of Solitons, The Inverse Scattering Methods (NewYork: Consultants Bureau)
[7] Newell A C 1985 Solitons in Mathematics and Physics(Philadelphia, PA: SIAM)
[8] Matveev V B and Salle M A 1991 DarbouxTransformations and Solitons (Berlin: Springer)
[9] Gu C H 1995 Soliton theory and its application(Berlin: Springer)
[10] Antonowicz M, Fordy A P and Liu Q P 1991 Nonlinearity 4 669
[11] Geng X G, Wu Y T and Cao C W 1999 J. Phys. A: Math.Gen. 32 3733
[12] Geng X G and Cao C W 2001 Nonlinearity 141433
[13] Tu G Z 1989 J. Phys. A: Math. Gen. 22 2375
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 050201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 050201
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 050201
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 050201
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 050201
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 050201
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 050201
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 050201
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 050201
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 050201
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 050201
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050201
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050201
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 050201
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050201
Viewed
Full text


Abstract