GENERAL |
|
|
|
|
A Hierarchy of New Nonlinear Evolution Equations Associated with a 3×3 Matrix Spectral Problem |
GENG Xian-Guo, LI Fang |
Department of Mathematics, Zhengzhou University, Zhengzhou 450052 |
|
Cite this article: |
GENG Xian-Guo, LI Fang 2009 Chin. Phys. Lett. 26 050201 |
|
|
Abstract A 3×3 matrix spectral problem with three potentials and the corresponding hierarchy of new nonlinear evolution equations are proposed. Generalized Hamiltonian structures for the hierarchy of nonlinear evolution equations are derived with the aid of trace identity.
|
Keywords:
02.30.Jr
|
|
Received: 01 December 2008
Published: 23 April 2009
|
|
PACS: |
02.30.Jr
|
(Partial differential equations)
|
|
|
|
|
[1] Gardner C, Greene J, Kruskal M and Miura R 1967 Phys. Rev. Lett. 19 1095 [2] Hirota R 1973 J. Phys. Soc. Japan 35 289 [3] Toda M 1970 Prog. Theor. Phys. Suppl. 45 1974 [4] Zakharov V, Musher S and Rubenshik A 1974 Sov. Phys.JETP Lett. 19 151 [5] Ablowitz M J and Segur H 1981 Solitons and theInverse Scattering Transform (Philadelphia, PA: SIAM) [6] Novikov S, Manakov S V, Pitaevskii L P and Zakharov V E1984 Theory of Solitons, The Inverse Scattering Methods (NewYork: Consultants Bureau) [7] Newell A C 1985 Solitons in Mathematics and Physics(Philadelphia, PA: SIAM) [8] Matveev V B and Salle M A 1991 DarbouxTransformations and Solitons (Berlin: Springer) [9] Gu C H 1995 Soliton theory and its application(Berlin: Springer) [10] Antonowicz M, Fordy A P and Liu Q P 1991 Nonlinearity 4 669 [11] Geng X G, Wu Y T and Cao C W 1999 J. Phys. A: Math.Gen. 32 3733 [12] Geng X G and Cao C W 2001 Nonlinearity 141433 [13] Tu G Z 1989 J. Phys. A: Math. Gen. 22 2375 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|