CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Squeezing Effect of a Nanomechanical Resonator Coupled to a Two-Level System: an Equilibrium Approach |
LI Jing, CHEN Zhi-De |
Department of Physics, Jinan University, Guangzhou 510632 |
|
Cite this article: |
LI Jing, CHEN Zhi-De 2009 Chin. Phys. Lett. 26 038501 |
|
|
Abstract The squeezing effect of a nanomechanical resonator coupled to a two-level system is studied by variational calculations based on both the displaced-squeezed-state (DSS) and the displaced-oscillator-state (DOS). The stable region of the DSS ground state at both T=0 and T≠0 and the corresponding squeezing factor are calculated. It is found that when the resonator frequency lies in (kBT,Δ), where Δ is the tunnelling splitting of the two-level-system in the presence of dissipation, tunnelling splitting of a DSS ground state decreases with the temperature, while tunnelling splitting of a DOS ground state increases with the temperature in low temperature region. This opposite temperature dependence can help to distinguish between the DSS and DOS ground state in the experiment.
|
Keywords:
85.85.+j
85.35.Gv
42.50.Dv
|
|
Received: 19 November 2008
Published: 19 February 2009
|
|
PACS: |
85.85.+j
|
(Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)
|
|
85.35.Gv
|
(Single electron devices)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
|
|
[1] Cleland A N and Roukes M L 1996 Appl. Phys. Lett. 69 2653 ibid 1998 Nature 392 160 [2] Nakamura Y, Chen C D and Tsai J S 1997 Phys. Rev.Lett. 79 2328 [3] Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786 [4] LaHaye M D, Buu O, Camarota B and Schwab K C 2004 Science 304 74 [5] Irish E K and Schwab K 2003 Phys. Rev. B 68155311 [6] Irish E K, Gea-Banacloche J, Martin I and Schwab K C 2005 Phys. Rev. B 72 195410 [7] Tian L 2005 Phys. Rev. B 72 195411 [8] Sandu T 2006 Phys. Rev. B 74 113405 [9] Blencowe M P and Wybourne M N 2000 Physica B 280 555 [10] Ruskov R, Schwab K and Korotkov A N 2005 Phys. Rev.B 71 235407 [11] Armour A D, Blencowe M P and Schwab K C 2002 Phys.Rev. Lett. 88 148301 [12] Rabl P, Shnirman A and Zoller P 2004 Phys. Rev. B 70 205304 [13] Xue F, Zhong L, Li Y and Sun C P 2007 Phys. Rev. B 75 033407 [14] Treutlein P, Hunger D, Camerer S, H\"ansch T W andReichel J 2007 Phys. Rev. Lett. 99 140403 [15] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A,Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1 andreferences therein [16] Weiss U 1999 Quantum Dissipative Systems(Singapore: World Scientific) [17] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89 [18] Dutra S M 2005 Cavity Quantum Electrodynamics (TheStrange Theory of Light in a Box) (New Jersey: John Wiley \& Sons)chap 4 p 113 [19] Gerry C G and Knight P 2005 Introductory QuantumOptics (Cambridge: Cambridge University Press) chap 7 p 150 [20] Caves C M, Thorne K S, Drever R W P, Sandberg V D andZimmermann M 1980 Rev. Mod. Phys. 52 341 [21] Bocko M F and Onofrio R 1996 Rev. Mod. Phys. 68 755 [22] Makhlin Y, Sch\"on G and Shnirman A 2001 Rev. Mod.Phys. 73 357 [23] Chen H, Zhang Y M and Wu X 1989 Phys. Rev. B 39 546 Chen H, Zhang Y M and Wu X 1989 Phys. Rev. B 4011326 [24] Chen H and Yu L 1992 Phys. Rev. B 45 13753 [25] Silbey R and Harris R A 1984 J. Chem. Phys. 80 2615 [26] Blum K 1996 Density Matrix and Applications (NewYork: Plenum) chap 3 p 67 [27] Chin A and Turlakov M 2006 Phys. Rev. B 73075311 [28] Chen Z D and Hou Z L 2008 Chin. Phys. B 172701 [29] Chin A W 2007 Phys. Rev. B 76 201307(R) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|