Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030501    DOI: 10.1088/0256-307X/26/3/030501
GENERAL |
An Adaptive Denoising Algorithm for Noisy Chaotic Signals Based on Local Sparse Representation
XIE Zong-Bo, FENG Jiu-Chao
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641
Cite this article:   
XIE Zong-Bo, FENG Jiu-Chao 2009 Chin. Phys. Lett. 26 030501
Download: PDF(276KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An adaptive denoising algorithm based on local sparse representation (local SR) is proposed. The basic idea is applying SR locally to clusters of signals embedded in a high-dimensional space of delayed coordinates. The clusters of signals are represented by the sparse linear combinations of atoms depending on the nature of the signal. The algorithm is applied to noisy chaotic signals denoising for testing its performance. In comparison with recently reported leading alternative denoising algorithms such as kernel principle component analysis (Kernel PCA), local independent component analysis (local ICA), local PCA, and wavelet shrinkage (WS), the proposed algorithm is more efficient.
Keywords: 05.45.-a      84.40.Ua     
Received: 08 September 2008      Published: 19 February 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Zong-Bo
FENG Jiu-Chao
[1] Blanchard G, Bousquet O and Zwald L 2007 MachineLearning 66 259
[2] Gruber P, Stadlthanner K and Theis F J 2006 Neurocomputing 69 1485
[3] Hu G, Peng Q S and Forrest A R 2006 VisualComputing 22 147
[4] Balster E J, Zheng Y F and Ewing R L 2006 IEEE Trans.Circuits Syst. Video Technol. 16 220
[5] Cheveign A D and Simon J Z 2006 J. Neurosci. Methods 171 331
[6] Kotoulas D, Koukoulas P and Kalouptsidis N 2006 IEEETrans. Signal Process. 54 1315
[7] Fischer S, Cristoba G and Redondo R 2006 IEEE Trans.Image Process. 15 265
[8] Donoho D L, Elad M and Temlyakov V N 2005 IEEE Trans.Information Theory 14 423
[9] Horvat M, Prosen T and Esposti M D 2006 Nonlinearity 19 1471
[10] Peters G 2006 Pattern Recognition 39 1481
[11] Andrle M and Neira L R 2007 Signal Process. 86 480
[12] Willeboordse F H and Kaneko K 1994 Phys. Rev. Lett. 73 533
[13] Hu G, Xie F and Qu Z 1997 Phys. Rev. E 562738
[14] Yi Z and Small M 2006 IEEE Trans. Circ. Syst.II 53 772
[15] Duan X J and Wang Z M 2007 Chin. J. Astronaut. 26 6
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 030501
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 030501
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 030501
Viewed
Full text


Abstract