Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030201    DOI: 10.1088/0256-307X/26/3/030201
GENERAL |
Geometric Description of Fibre Bundle Surface for Birkhoff System
CAO Li-Mei, SUN Hua-Fei, ZHANG Zhen-Ning
Department of Mathematics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
CAO Li-Mei, SUN Hua-Fei, ZHANG Zhen-Ning 2009 Chin. Phys. Lett. 26 030201
Download: PDF(195KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fibre bundle surface for the Birkhoff system is constructed. The metric and the Riemannian connection of the surface are defined and the representation of the Gaussian curvature of this surface is presented. Finally, three examples for the Birkhoff system are given to illustrate our results.
Keywords: 02.40.-k      03.65.Vf     
Received: 11 November 2008      Published: 19 February 2009
PACS:  02.40.-k (Geometry, differential geometry, and topology)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Li-Mei
SUN Hua-Fei
ZHANG Zhen-Ning
[1] Santilli R M 1983 Foundations of theoreticalmechanics I$\!$I (New York: Springer)
[2] Mei F X et al 1996 Dynamics of Birkhoffian System(Beijing: Beijing Institute of Technology Press) (in Chinese)
[3] Wu H B 1994 PhD Dissertation (Beijing: BeijingInstitute of Technology) (in Chinese)
[4] Mei F X 1991 Advanced Analytical Mechanics (Beijing:Beijing Institute of Technology Press) (in Chinese)
[5] Mei F X, Sang M 2008 Chin. Phys. Lett. 25 3837
[6] Mei F X 1993 Sci. Chin. A 36 145
[7] Mei F X, Xie J F and Gang T Q 2007 Chin. Phys. Lett. 24 1133
[8] Wu H B 2004 J. Beijing Inst. Technol. 24 20(in Chinese)
[9] Wu H B, Zhang Y F and Mei F X 2006 Acta Phys. Sin. 55 4987 (in Chinese)
[10] Li F X 2008 PhD Dissertation (Beijing: BeijingInstitute of Technology) (in Chinese)
[11] Chao J and Li H 2005 Proc. ICIP 1 1021
[12] Chen W H Introduction to Riemannian Geometry I(Beijing: Peking University Press) (in Chinese)
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 030201
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 030201
[3] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 030201
[4] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 030201
[5] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 030201
[6] ZHENG Xiao-Hu, DONG Jun, LIU Yu-Wen, YANG Ming, CAO Zhuo-Liang. Unconventional Geometric Quantum Gate in Circuit QED[J]. Chin. Phys. Lett., 2010, 27(7): 030201
[7] FENG Zhi-Bo, YAN Run-Ying. Robust Quantum Computation with Superconducting Charge Qubits via Coherent Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 030201
[8] JIANG Ming-Ming, YU Si-Xia. Generators for Symmetric Universal Quantum Cloning Machines[J]. Chin. Phys. Lett., 2010, 27(1): 030201
[9] XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 030201
[10] JIA Xiao-Yu, WANG Na. Geometric Approach to Lie Symmetry of Discrete Time Toda Equation[J]. Chin. Phys. Lett., 2009, 26(8): 030201
[11] LIU Long-Jiang, LIU Yu-Zhen, TONG Dian-Min. A Solved Model to Show Insufficiency of Quantitative Adiabatic Condition[J]. Chin. Phys. Lett., 2009, 26(3): 030201
[12] SHI Chang-Guang. Geometric Property of the Faddeev Model[J]. Chin. Phys. Lett., 2008, 25(3): 030201
[13] WANG Fa-Qiang, ZHANG Zhi-Ming. Evolution of Coherent Light in a Simple Polariton Model[J]. Chin. Phys. Lett., 2008, 25(3): 030201
[14] LI Ying, LIU Zeng-Rong, ZHANG Jian-Bao. Synchronization between Different Networks[J]. Chin. Phys. Lett., 2008, 25(3): 030201
[15] REN Ji-Rong, ZHU Tao, DUAN Yi-Shi. Topological Properties of Spatial Coherence Function[J]. Chin. Phys. Lett., 2008, 25(2): 030201
Viewed
Full text


Abstract