Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 028702    DOI: 10.1088/0256-307X/26/2/028702
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Generalized Synchronization of Time-Delayed Differential Systems
JING Jian-Yi1, MIN Le-Quan1,2
1Information Engineering School, University of Science and Technology Beijing, Beijing 1000832Applied Science School, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
JING Jian-Yi, MIN Le-Quan 2009 Chin. Phys. Lett. 26 028702
Download: PDF(301KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We establish two theorems for two time-delayed (chaotic) differential equation systems to achieve time-delayed generalized synchronization (TDGS). The theorems uncover general forms of two TDGS systems via a prescribed differentiable transformation. Based on the theorems, we use two-coupled Ikeda equations as the driving system to construct TDGS driven systems via two prescribed transformations. Numerical simulations demonstrate the effectiveness of the proposed theorems. It may be expected that our theorems provide new tools for understanding and studying TDGS phenomena.
Keywords: 87.18.Sn      05.45.Jn      02.60.Cb     
Received: 01 September 2008      Published: 20 January 2009
PACS:  87.18.Sn (Neural networks and synaptic communication)  
  05.45.Jn (High-dimensional chaos)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/028702       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/028702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JING Jian-Yi
MIN Le-Quan
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Rulkov N F, Sushchik M M and Tsimring L S 1995 Phys.Rev. E 51 980
[3] Abarbanel H D I, Rulkov N F and Sushchik M M 1996 Phys. Rev. E 531 4528
[4] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys.Rev. Lett. 76 1804
[5] Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 761816
[6] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys.Rev. Lett. 78 4193
[7] Masoller C 2001 Phys. Rev. Lett. 86 2782
[8] Uchida A, McAllister R, Meucci R and Roy R 2003 Phys.Rev. Lett. 91 174101
[9] Zhang Q C, Wang W and Li W Y 2008 Chin. Phys. Lett. 25 1905
[10] Liu L, Liu C X and Zhang Y B 2007 Chin. Phys. Lett. 24 2756
[11] Duan L X and Lu Q S 2005 Chin. Phys. Lett. 221325
[12] Ding M, Ding E, Ditto W L, Gluckman B, In V, Peng J,Spano M L and Yang W 1997 Chaos 7 644
[13] Li D, Wang S L, Zhang X H, Yang D and Wang H 2008 Chin. Phys. Lett. 25 401
[14] Zhang F, Lu Q S and Duan L X 2007 Chin. Phys. Lett. 24 3344
[15] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[16] Sorrentino F and Ott E 2007 Phys. Rev. E 76056114
[17] Lv G H, Wang H Y, Jiang X, Ding Q and Zhuang P D 2008 Chin. Phys. Lett. 25 1142
[18] Liu Z R and Chen G R 2003 Chaos, Solitons andFractals 18 785
[19] Li Y N, Chen L, Cai Z S and Zhao X Z 2003 Chaos,Solitons and Fractals 17 699
[20] Hunt B R, Ott E and York J A 1997 Phys. Rev. 55 4029
[21] Murali K and Laskshmanan M. 1998 Phys. Lett. A 241 303
[22] Yang T and Chua L O 1999 Int. J. Bifur. Chaos 9 215
[23] Fort J and Me\'{ndez V 2002 Phys. Rev. Lett. 89 178101
[24] Kunec S and Bose A. 2001 Phys. Rev. E 63021908
[25] Epstein I R 1990 J. Chem. Phys. 92 1702
[26] Bertram M and Mikhailov A S 2001 Phys. Rev. E 63 066102
[27] Parmananda P and Hudson J L 2001 Phys. Rev. E 64 037201
[28] Giacomelli G and Politi A 1996 Phys. Rev. Lett. 76 7682
[29] Ikeda K. 2000 Opt. Commun. 30 257
[30] Agiza H N and Yassen M T 1994 Phys. Rev. Lett. 73 1099
[31] Ahlers V, Parlitz U and Lauterborn W 1998 Phys.Rev. E 58 7208
[32] Hohl A, Gavrielides A, Erneux T and Kovanis V 1999 Phys. Rev. A 59 3941
[33] Kozyreff G, Valdimirocv A G and Mandel P 2001 Phys.Rev. E 64 016613
[34] Heil T, Fischer I, Elsasser W, Mulet J and Mirasso C R2001 Phys. Rev. Lett. 86 795
[35] Reddy D V R, Sen A and Johnston G L 2000 Phys. Rev.Lett. 85 3381
[36] Farmer J D 1982 Physica D 4 366
[37] Buchner T and Zebrowski J J 2000 Phys. Rev. E 63 016210
[38] Mensour B and Longtin A 1998 Phys. Rev. A 22459
[39] Liu Y W, Ge G M, Zhao H, Wang Y H and Liang G 2000 Phys. Rev. E 62 7898
[40] Udaltsov V S, Goedgebuer J P, Larger L and Rhodes W T2001 Phys. Rev. Lett. 86 1892
[41] Ikeda K and Matsumoto K 1987 Physica D 29 223
[42] Ikeda K and Matsumoto K 1986 J. Stat. Phys. 44 955
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 028702
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 028702
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 028702
[4] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 028702
[5] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 028702
[6] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 028702
[7] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 028702
[8] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 028702
[9] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 028702
[10] LI Ling**, JIN Zhen-Lan . Scale-Free Brain Networks Based on the Event-Related Potential during Visual Spatial Attention[J]. Chin. Phys. Lett., 2011, 28(4): 028702
[11] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 028702
[12] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 028702
[13] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 028702
[14] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 028702
[15] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 028702
Viewed
Full text


Abstract