CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Generalized Synchronization of Time-Delayed Differential Systems |
JING Jian-Yi1, MIN Le-Quan1,2 |
1Information Engineering School, University of Science and Technology Beijing, Beijing 1000832Applied Science School, University of Science and Technology Beijing, Beijing 100083 |
|
Cite this article: |
JING Jian-Yi, MIN Le-Quan 2009 Chin. Phys. Lett. 26 028702 |
|
|
Abstract We establish two theorems for two time-delayed (chaotic) differential equation systems to achieve time-delayed generalized synchronization (TDGS). The theorems uncover general forms of two TDGS systems via a prescribed differentiable transformation. Based on the theorems, we use two-coupled Ikeda equations as the driving system to construct TDGS driven systems via two prescribed transformations. Numerical simulations demonstrate the effectiveness of the proposed theorems. It may be expected that our theorems provide new tools for understanding and studying TDGS phenomena.
|
Keywords:
87.18.Sn
05.45.Jn
02.60.Cb
|
|
Received: 01 September 2008
Published: 20 January 2009
|
|
PACS: |
87.18.Sn
|
(Neural networks and synaptic communication)
|
|
05.45.Jn
|
(High-dimensional chaos)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
|
|
|
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821 [2] Rulkov N F, Sushchik M M and Tsimring L S 1995 Phys.Rev. E 51 980 [3] Abarbanel H D I, Rulkov N F and Sushchik M M 1996 Phys. Rev. E 531 4528 [4] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys.Rev. Lett. 76 1804 [5] Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 761816 [6] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys.Rev. Lett. 78 4193 [7] Masoller C 2001 Phys. Rev. Lett. 86 2782 [8] Uchida A, McAllister R, Meucci R and Roy R 2003 Phys.Rev. Lett. 91 174101 [9] Zhang Q C, Wang W and Li W Y 2008 Chin. Phys. Lett. 25 1905 [10] Liu L, Liu C X and Zhang Y B 2007 Chin. Phys. Lett. 24 2756 [11] Duan L X and Lu Q S 2005 Chin. Phys. Lett. 221325 [12] Ding M, Ding E, Ditto W L, Gluckman B, In V, Peng J,Spano M L and Yang W 1997 Chaos 7 644 [13] Li D, Wang S L, Zhang X H, Yang D and Wang H 2008 Chin. Phys. Lett. 25 401 [14] Zhang F, Lu Q S and Duan L X 2007 Chin. Phys. Lett. 24 3344 [15] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109 [16] Sorrentino F and Ott E 2007 Phys. Rev. E 76056114 [17] Lv G H, Wang H Y, Jiang X, Ding Q and Zhuang P D 2008 Chin. Phys. Lett. 25 1142 [18] Liu Z R and Chen G R 2003 Chaos, Solitons andFractals 18 785 [19] Li Y N, Chen L, Cai Z S and Zhao X Z 2003 Chaos,Solitons and Fractals 17 699 [20] Hunt B R, Ott E and York J A 1997 Phys. Rev. 55 4029 [21] Murali K and Laskshmanan M. 1998 Phys. Lett. A 241 303 [22] Yang T and Chua L O 1999 Int. J. Bifur. Chaos 9 215 [23] Fort J and Me\'{ndez V 2002 Phys. Rev. Lett. 89 178101 [24] Kunec S and Bose A. 2001 Phys. Rev. E 63021908 [25] Epstein I R 1990 J. Chem. Phys. 92 1702 [26] Bertram M and Mikhailov A S 2001 Phys. Rev. E 63 066102 [27] Parmananda P and Hudson J L 2001 Phys. Rev. E 64 037201 [28] Giacomelli G and Politi A 1996 Phys. Rev. Lett. 76 7682 [29] Ikeda K. 2000 Opt. Commun. 30 257 [30] Agiza H N and Yassen M T 1994 Phys. Rev. Lett. 73 1099 [31] Ahlers V, Parlitz U and Lauterborn W 1998 Phys.Rev. E 58 7208 [32] Hohl A, Gavrielides A, Erneux T and Kovanis V 1999 Phys. Rev. A 59 3941 [33] Kozyreff G, Valdimirocv A G and Mandel P 2001 Phys.Rev. E 64 016613 [34] Heil T, Fischer I, Elsasser W, Mulet J and Mirasso C R2001 Phys. Rev. Lett. 86 795 [35] Reddy D V R, Sen A and Johnston G L 2000 Phys. Rev.Lett. 85 3381 [36] Farmer J D 1982 Physica D 4 366 [37] Buchner T and Zebrowski J J 2000 Phys. Rev. E 63 016210 [38] Mensour B and Longtin A 1998 Phys. Rev. A 22459 [39] Liu Y W, Ge G M, Zhao H, Wang Y H and Liang G 2000 Phys. Rev. E 62 7898 [40] Udaltsov V S, Goedgebuer J P, Larger L and Rhodes W T2001 Phys. Rev. Lett. 86 1892 [41] Ikeda K and Matsumoto K 1987 Physica D 29 223 [42] Ikeda K and Matsumoto K 1986 J. Stat. Phys. 44 955 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|