CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Mode-II Crack Problem for a Long Rectangular Slab of Superconductor under an Electromagnetic Force |
GAO Zhi-Wen, ZHOU You-He |
Key Laboratory of Mechanics on Western Disaster and Environment (Ministry of Education), and Department of Mechanics, Lanzhou University, Lanzhou 730000 |
|
Cite this article: |
GAO Zhi-Wen, ZHOU You-He 2009 Chin. Phys. Lett. 26 027403 |
|
|
Abstract We present a theoretical analysis to the fracture parameters of the large single domain YBCO superconductor with a tangential line crack under electromagnetic force. The mode-II fracture parameters are obtained due to coupled finite element and infinite element method, and the numerical results are conducted for two activation processes. For a zero-field cooling (ZFC) magnetization process, in the process of magnetic field descent, the larger the applied field is, the larger the stress intensity factors. In the case of field cooling (FC) magnetization process, the stress intensity factors have obvious differences between the two cases of bfc >1 and bfc≤1. Additionally, J-integral characteristic is obtained, and according to these results, the mode-II crack growth trend is predicted. These results are benefit for us to understand the fracture mechanism of superconductor both in theory and application.
|
Keywords:
74.25.Ld
46.50.+a
74.90.+n
|
|
Received: 24 April 2008
Published: 20 January 2009
|
|
PACS: |
74.25.Ld
|
(Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)
|
|
46.50.+a
|
(Fracture mechanics, fatigue and cracks)
|
|
74.90.+n
|
(Other topics in superconductivity)
|
|
|
|
|
[1] Hull J. 2000 Supercond. Sci. Technol. 13 R1 [2] Hull J, Murakami M. 2004 Proc. IEEE 92 1705 [3] Nagashima K, Higuchi T. 1997 Cryogenics 37 577 [4] Ren Y, Weinstein R. 1995 Physica C 251 15 [5] Miyamoto T, Nagashima K. 2000 Physica C 340 41 [6] Tomita M, Murakami M. 2001 Physica C 354 358 [7] Tsuchimoto M, Takashima H. 2002 Physica C 378--381 718 [8] Nariki S, Sakai N. 2002 Physica C 378--381 779 [9] Tomita M, Murakami M. 2002 Physica C 378-381783 [10] Tomita M, Murakami M. 2003 Physica C 392--396493 [11] Murakami A, Katagiri K. 2003 Physica C 392--396 557 [12] Okudera T, Murakami A. 2003 Physica C 392--396 628 [13] Murakami A, Katagiri K. 2005 Physica C 426--431 644 [14] Katagiri K, Sato T. 2005 Physica C 426--431709 [15] Murakami A, Katagiri K. 2006 Physica C 445--448 361 [16] Zhou Y, Yong H. 2007 Phys. Rev. B 76 094523 [17] Zhang W, Li Z, Chen X, Cai L, Jing F. 2008 Chin.Phys. Lett. 25 2603 [18] Chen L, Li H. 2003 Chin. Phys. Lett. 20 1128 [19] Ikuta. H, Hirota. N, Nakayama. Y, Kishio. K, Kitazawa. K.1993 Phys. Rev. Lett. 70 2166 [20] Johansen T. 1998 Phys. Rev. Lett. 80 4757 [21] Johansen T. 1999 Phys. Rev. B 59 11187 [22] Johansen T. 1999 Phys. Rev. B 60 9690 [23] Johansen T, Wang C. 2000 J. Appl. Phys. 882730 [24] Johansen T. 2000 Supercond. Sci. Technol. 13R121 [25] Wan Y, Fang D, Soh A and Hwang K 2003 Fatigue Fract.Enging. Mater. Struct. 26 1091 [26] Wan Y, Fang D and Soh A 2004 Int. J. Solids Struct. 41 6129 [27] Zienkiewicz O, Emson C. 1983 Int. J. Numer. Methods Engin. 19 393 [28] Shih C F, Moran B and Nakamura T 1986 Int. J.Fracture 30 79 [29] Bean C P 1962 Phys. Rev. Lett 8 250 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|