Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 022601    DOI: 10.1088/0256-307X/26/2/022601
NUCLEAR PHYSICS |
Effects of δ Meson on Thermal Protoneutron Star Matter
YU Zi1, LIU Guang-Zhou1, ZHU Ming-Feng1, XU Yan1, ZHAO En-Guang2
1Department of Physics, Jilin University, Changchun 1300212Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
YU Zi, LIU Guang-Zhou, ZHU Ming-Feng et al  2009 Chin. Phys. Lett. 26 022601
Download: PDF(387KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the framework of the relativistic mean field theory, the effects of the δ meson on protoneutron star matter with hyperons at finite temperature are investigated. In thermal protoneutron star matter, the δ field potential increases with density first and then decreases. Fixing the density, the increase of the temperature suppresses the δ field potential. With the inclusion of the δ meson, the threshold densities for hyperons become lower and the abundance of trapped neutrinos decreases. The most important effect of the δ meson is to increase the abundance of hyperons in the inner core range of protoneutron stars. With the rise of the temperature, the density range where the δ meson plays an important role is narrowed and the effects of the δ meson are suppressed. Moreover, the protoneutron star mass and radius are nearly not affected by the δ meson
Keywords: 26.60.+c      24.10.Jv      21.65.+f      21.30.Fe     
Received: 25 November 2008      Published: 20 January 2009
PACS:  26.60.+c  
  24.10.Jv (Relativistic models)  
  21.65.+f  
  21.30.Fe (Forces in hadronic systems and effective interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/022601       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/022601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Zi
LIU Guang-Zhou
ZHU Ming-Feng
XU Yan
ZHAO En-Guang
[1] Walecka J D 1974 Ann. Phys. (N.Y.) 83 491 Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1
[2] Liu B et al 2002 Phys. Rev. C 65 045201
[3] Kubis S and Kutschera M 1997 Phys. Lett. B 399 191
[4] Guo H et al 2003 Phys. Rev. C 68 035803
[5] Menezes D P and Provid$\hat{\rm e$ncia C 2004 Phys. Rev. C 70 058801
[6] Wei F X, Mao G J, Ko C M and Kisslinger L S 2006 it J.Phys. G 32 47
[7] Liu B, Guo H, Toro M Di and Greco V 2005 Eur. Phys.J. A 25 293
[8] Liu B et al 2007 Phys. Rev. C 75 048801
[9] Bethe H A 1990 Rev. Mod. Phys. 62 801
[10] Burrows T J, Mazurek A and Lattimer J M 1981 Astrophys. J. 251 325
[11] Burrows A and Lattimer J M 1986 Astrophys. J. 307 178
[12] Batty C J, Friedman E, Gal A and Jennings B K 1994 Phys. Lett. 335 273
[13] Balberg S, Gal A and Schaffner J 1994 Prog. Theor.Phys. Suppl. 117 325
[14] Stoks V J G and Lee T S H 1999 Phys. Rev. C 60 024006
[15] Boguta J and Bodmer A R 1977 Nucl. Phys. A 292 413
[16] Oppenheimer J R and Volkoff G 1939 Phys. Rev. 55 374
[17] Glendenning N K and Moszkowski S A 1991 Phys. Rev.Lett. 67 18
[18] Taylor J H and Weisberg J M 1989 Astrophys. J. 345 434 Joss P C and Rappaport S A 1984 Ann.Rev. Astron. Astrophys. 22 537
Related articles from Frontiers Journals
[1] LI Zeng-Hua, ZUO Wei. Symmetry Potential and Effective Mass with Consistent Three-Body Force[J]. Chin. Phys. Lett., 2012, 29(6): 022601
[2] GAN Sheng-Xin,ZUO Wei**,U. Lombardo. Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach[J]. Chin. Phys. Lett., 2012, 29(4): 022601
[3] JIANG Zhi-Jin, SUN Yu-Fen. Energy and Centrality Dependences of Pseudorapidity Distributions of Charged Particles in Cu+Cu Collisions[J]. Chin. Phys. Lett., 2012, 29(2): 022601
[4] LI Zeng-Hua, **, ZHANG Da-Peng, SCHULZE Hans-Josef, ZUO Wei. Second-Order Contribution of the Incompressibility in Asymmetric Nuclear Matter[J]. Chin. Phys. Lett., 2012, 29(1): 022601
[5] LI Zeng-Hua, **, ZUO Wei, GUO Wen-Jun. Single-Particle Properties of Isospin Asymmetric Nuclear Matter[J]. Chin. Phys. Lett., 2012, 29(1): 022601
[6] SONG Chun-Yan, YAO Jiang-Ming, MENG Jie, ** . Tensor Coupling Effects on Spin Symmetry in the Anti-Lambda Spectrum of Hypernuclei[J]. Chin. Phys. Lett., 2011, 28(9): 022601
[7] XING Yong-Zhong, **, ZHU Yu-Lan, WANG Yan-Yan, ZHENG Yu-Ming, . Collective Flow of Λ Hyperons within Covariant Kaon Dynamics[J]. Chin. Phys. Lett., 2011, 28(9): 022601
[8] YU Zi**, DING Wen-Bo, BAO Tmurbagan, LIU Ning-Ning . PSR J1614-2230 May Include Hyperons[J]. Chin. Phys. Lett., 2011, 28(8): 022601
[9] DING Wen-Bo**, YU Zi, LIU Yu-Hui . Cooling of Hyperonic Neutron Stars with Antikaons[J]. Chin. Phys. Lett., 2011, 28(7): 022601
[10] WANG Yan-Zhao, GU Jian-Zhong, **, ZHANG Xi-Zhen, DONG Jian-Min, . Tensor Effect on Bubble Nuclei[J]. Chin. Phys. Lett., 2011, 28(10): 022601
[11] XING Yong-Zhong, ZHENG Yu-Ming, WANG Yan-Yan, ZHANG Lin, QU Shi-Xian. Observation of Influence of Nucleons' Motion on Kaons Collective Flow in Dense Medium[J]. Chin. Phys. Lett., 2010, 27(1): 022601
[12] ZHANG Ying, LIANG Hao-Zhao, MENG Jie,. Solving the Dirac Equation with Nonlocal Potential by Imaginary Time Step Method[J]. Chin. Phys. Lett., 2009, 26(9): 022601
[13] JIA Yi-Jian, ZHANG Ying-Xun, LI Zhu-Xia, LU Xiao-Hua, LIU Fu-Hu. The influence of Isospin Dependence of In-Medium NN Cross Sections on the Ratio of Emitted Neutrons to Protons in HICs[J]. Chin. Phys. Lett., 2009, 26(7): 022601
[14] OU Li, LI Zhu-Xia, WU Xi-Zhen, SUN Wei-Li. Disentangling the Effects of Thickness of the Neutron Skin and Symmetry Potential in Nucleon Induced Reactions on Sn Isotopes[J]. Chin. Phys. Lett., 2009, 26(5): 022601
[15] TIAN Yuan, MA Zhong-Yu, Ring Peter. Relativistic Quasiparticle Random Phase Approximation with a Separable Pairing Force[J]. Chin. Phys. Lett., 2009, 26(5): 022601
Viewed
Full text


Abstract