Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 020313    DOI: 10.1088/0256-307X/26/2/020313
GENERAL |
Effects of Intrinsic Decoherence on Information Transport in a Spin Chain
ZENG Tian-Hai, SHAO Bin, ZOU Jian
Department of Physics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
ZENG Tian-Hai, SHAO Bin, ZOU Jian 2009 Chin. Phys. Lett. 26 020313
Download: PDF(609KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering Milburn's intrinsic decoherence effect on quantum communication through a spin chain, we show that the~transfer~quality for~quantum state and entanglement will obviously decrease with the increasing intrinsic decoherence rate. Some odd chains are much higher than even ones for the state transfer efficiency. The state transfer of a long chain is very sensitive to the intrinsic decoherence, which turns out to be an obstacle for information transport.
Keywords: 03.67.Hk      03.65.Yz      75.10.Jm     
Received: 21 July 2008      Published: 20 January 2009
PACS:  03.67.Hk (Quantum communication)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/020313       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/020313
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZENG Tian-Hai
SHAO Bin
ZOU Jian
[1] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[2] Paternostro M, Son W and Kim M S 2004 Phys. Rev.Lett. 92 197901
[3] Zhang Y, Cao W C, Long G L 2005 Chin. Phys. Lett. 22 2143
[4] Serafini A, Paternostro M, Kim M S and Bose S 2006 Phys. Rev. A 73 022312
[5] Zou J, Li J G, Shao B, Li J and Li Q S 2006 Phys.Rev. A 73 042319 Zeng T H, Shao B and Zou J 2007 Commun. Theor. Phys. 48 645
[6] Li Y, Shi T, Chen B, Song Z and Sun C P 2005 Phys.Rev. A 71 022301
[7] Wang Z M, Shao B and Zou J 2007 Chin. Phys. Lett. 24 855 Wang Z M, Shao B, Chang P and Zou J 2007 J. Phys. A 40 9067
[8] Bose S 2003 Phys. Rev. Lett. 91 207901
[9] Maruyama K, Iitaka T and Nori F 2007 Phys. Rev. A 75 012325
[10] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[11] Alastair Kay 2007 Phys. Rev. Lett. 98 010501
[12] Cai J M, Zhou Z W and Guo G C 2006 Phys. Rev. A 74 022328
[13] Burgarth D and Bose S 2006 Phys. Rev. A 73062321
[14] Milburn G J 1991 Phys. Rev. A 44 5401
[15] Moya-Cessa H, Bu\v{zek V, Kim M S and Knight P L 1993 Phys. Rev. A 48 3900
[16] Li S B and Xu J B 2003 Phys. Lett. A 311 313 Li S B and Xu J B 2005 Phys. Lett. A 334 109
[17] Shao B, Zeng T H and Zou J 2005 Commun. Theor.Phys. 44 255 Liu X N, Shao B and Zou J 2005 Chin. Phys. Lett. 22 2997 Hohenester U, Pfanner G and Seliger M 2007 Phys. Rev.Lett. 99 047402 Zhang J S and Xu J B 2008 Chin. Phys. Lett. 2524 Qiu L, Wang A M and Ma X S 2008 Commun. Theor. Phys. 49 516
[18] Xu J B, Zou X B and Yu J H 2000 Eur. Phys. J. D 10 295
[19] Horodecki M, Horodecki P and Horodecki R 1999 Phys.Rev. A 60 1888
[20] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022 Wootters W K 1998 Phys. Rev. Lett. 80 2245
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 020313
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 020313
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 020313
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 020313
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 020313
[6] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 020313
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 020313
[8] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 020313
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 020313
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 020313
[11] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 020313
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 020313
[13] PENG Liang, HUANG Yun-Feng**, LI Li, LIU Bi-Heng, LI Chuan-Feng**, GUO Guang-Can . Experimental Demonstration of Largeness in Bipartite Entanglement Sudden Death[J]. Chin. Phys. Lett., 2011, 28(7): 020313
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 020313
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 020313
Viewed
Full text


Abstract