Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 020307    DOI: 10.1088/0256-307X/26/2/020307
GENERAL |
Generation of the W State through the Cavity-Electron Interaction
TANG Li
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
TANG Li 2009 Chin. Phys. Lett. 26 020307
Download: PDF(183KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a scheme to generate the W state through the cavity-electron interaction involving a single-mode cavity and N identical electrons. Successive no-photon detection of the cavity projects the electrons to the desired W state. The time evolution of the electron-cavity system involving cavity decay is also discussed.

Keywords: 03.67.Bg      05.30.Fk      71.10.-w     
Received: 24 September 2008      Published: 20 January 2009
PACS:  03.67.Bg (Entanglement production and manipulation)  
  05.30.Fk (Fermion systems and electron gas)  
  71.10.-w (Theories and models of many-electron systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/020307       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/020307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Li
[1] Schr\"odinger E 1935 it Naturwissenschaften bf23807 Schr\"odinger E 1935 it Naturwissenschaften bf23 823 Schr\"odinger E 1935 it Naturwissenschaften bf23 844
[2] Bouwmeester D, Ekert A and Zeilinger A 2000 it ThePhysics of Quantum Information (Berlin: Springer)
[3] Bennett C H and Divincenzo D P 2000 it Nature bf404 247
[4] D\"ur W, Vidal G and Cirac J I 2000 it Phys. Rev. Abf62 062314
[5] Greenberger D M, Horne M A and Zeilinger A 1989 it inBell's Theorem, Quantum Theory, and Conceptions of the Universe edKafatos M (Dordrecht: Kluwer) p 69
[6] Mermin N D 1990 it Phys. Today bf43 9 Mermin N D 1990 it Am. J. Phys. bf58 731
[7] Greenberger D M, Horne M A, Shimony A and Zeilinger A1990 it Am. J. Phys. bf58 1131
[8] Hillery M, Bu\v{zek V and Berthiaume A 1999 itPhys. Rev. A bf59 1829
[9]Joo J, Lee J, Jang J and Park Y J quant-ph/0204003
[10] Bu\v{zek V, Vedral V, Plenio M B, Knight P L andHillery M 1997 it Phys. Rev. A bf55 3327
[11] Jeschke G and Schweiger A 1996 it Mol. Phys.bf88 355 Bloch F and Siegert A 1940 it Phys. Rev. bf57 522
[12] Plenio M B, Huelga S F, Beige A and Knight P L 1999it Phys. Rev. A bf59 2468
[13] Polzik E S, Carri J and Kimble H J 1992 it Phys.Rev. Lett. bf68 3020
[14] Lougovski P, Casagrande F, Lulli A and Solano E2007 it Phys. Rev. A bf76 033802
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 020307
[2] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 020307
[3] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 020307
[4] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 020307
[5] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 020307
[6] LIAO Qing-Hong, FANG Guang-Yu, WANG Ji-Cheng, AHMAD Muhammad Ashfaq, LIU Shu-Tian** . Control of the Entanglement between Two Josephson Charge Qubits[J]. Chin. Phys. Lett., 2011, 28(6): 020307
[7] ZHANG Miao, JIA Huan-Yu, WEI Lian-Fu, ** . Entangling a Series of Trapped Ions by Moving Cavity Bus[J]. Chin. Phys. Lett., 2011, 28(6): 020307
[8] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 020307
[9] C. N. YANG, **, YOU Yi-Zhuang . One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(2): 020307
[10] ZHANG Han, , LUO Jun, REN Ting-Ting, , SUN Xian-Ping,. Testing Evolution Equation for Entanglement of Two-Qubit Systems in Noisy Channels on Ensemble Quantum Computers[J]. Chin. Phys. Lett., 2010, 27(9): 020307
[11] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 020307
[12] MA Zhong-Qi, C. N. Yang,. Spin 1/2 Fermions in 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction[J]. Chin. Phys. Lett., 2010, 27(8): 020307
[13] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 020307
[14] BAO Ri-Yan, WANG Xiao-Hua, HUANG Yan-Tang. Generation of Two-Atom Maximal Entanglement and Quantum Information Transfer via Microtoroidal Cavity-Atom System[J]. Chin. Phys. Lett., 2010, 27(8): 020307
[15] ZHANG Deng-Yu, TANG Shi-Qing, WANG Xin-Wen, XIE Li-Jun, ZHAN Xiao-Gui, CHEN Yin-Hua, GAO Feng. A Simple Scheme for the Preparation of Four-Photon GHZ States Based on Cavity QED[J]. Chin. Phys. Lett., 2010, 27(7): 020307
Viewed
Full text


Abstract