Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 020305    DOI: 10.1088/0256-307X/26/2/020305
GENERAL |
Dynamical Evolution and Entanglement in a Nonlinear Interacting System
SUN Hui-Ying, HUANG Xiao-Li, YI Xue Xi
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
Cite this article:   
SUN Hui-Ying, HUANG Xiao-Li, YI Xue Xi 2009 Chin. Phys. Lett. 26 020305
Download: PDF(796KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate a few features of entanglement of two types of particles coupled through a nonlinear interaction. It is shown that the entanglement created by the nonlinear interaction can reflect nonlinearity of the system. Possible observation of our prediction in a double-well trapped Bose-Einstein condensate is discussed.
Keywords: 03.65.Ud      05.45.-a      03.75.Kk     
Received: 17 June 2008      Published: 20 January 2009
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  05.45.-a (Nonlinear dynamics and chaos)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/020305       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/020305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Hui-Ying
HUANG Xiao-Li
YI Xue Xi
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bouwnmeester D, Ekert A and Zeilinger A 2000 ThePhysics of Quantum Information (Berlin: Springer)
[3] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[4] Nielsen M A 1998 PhD Dissertation (University of New Mexico) quant-ph/0011036
[5] Wooters W K 2000 quant-ph/0001114
[6] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev.Lett. 87 017901
[7] Meyer D A and Wallach N R 2001 quant-ph/0108104
[8] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K1996 Phys. Rev. A 54 3824
[9] Wang G F, Fu L B and Liu J 2006 Phys. Rev. A 73 013619
[10] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[11] Chan W H and Law C K 2006 Phys. Rev. A 74024301
[12] Franco R L, Compagno G, Messina A and Napoli A 2005 Phys. Rev. A 72 053806
[13] Bertoni A, Bordone P, Brunetti R, Jacoboni C and ReggianiS 2000 Phys. Rev. Lett. 84 5912
[14] Oliver W D, Yamaguchi F and Yamamoto Y 2002 Phys.Rev. Lett. 88 037901
[15] Ramsak A, Mravlje J, Zitko R and Bonca J 2006 Phys.Rev. B 74 241305(R)
[16] Ramsak A, Sega I and Jefferson J H 2006 Phys. Rev.A 74 010304(R)
[17] Fu L B and Liu J 2006 Phys. Rev. A 74 063614
[18] Wu B and Niu Q 2000 Phys. Rev. A 61 023402
[19] Liu J et al 2002 Phys. Rev. A 66 023404
[20] Wang W, Fu L B and Yi X X 2007 Phys. Rev. A 75 045601
[21] Albiez M, Gati Folling R J, Hunsmann S, Cristiani M andOberthaler M K 2005 Phys. Rev. Lett. 95 010402
[22] Graefe E M, Korsch H J and Witthaut D 2006 Phys.Rev. A 73 013617
[23] Hines A P, McKenzie R H and Milburn G J 2003 Phys.Rev. A 67 013609
[24] Fischer U R, Iniotakis C, and Posazhennikova A 2008 Phys. Rev. A 77 031602(R)
[25] Kierig E et al 2008 arXiv:0803.1406v1
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 020305
[8] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 020305
[9] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020305
[10] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 020305
[11] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 020305
[12] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 020305
[13] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 020305
[14] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 020305
[15] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020305
Viewed
Full text


Abstract