Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 124401    DOI: 10.1088/0256-307X/26/12/124401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram
M. CHANDRASEKAR, S. SURESH
Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, India
Cite this article:   
M. CHANDRASEKAR, S. SURESH 2009 Chin. Phys. Lett. 26 124401
Download: PDF(369KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We provide an approximate method to determine the dominant heat transport mechanism responsible for the anomalous enhancement of thermal conductivity in aqueous nanofluids. Due to a large degree of randomness and scatter observed in the published experimental data, limits to nanofluid thermal conductivity are fixed analytically by taking into account the contribution of particle Brownian motion and clustering, and a regime diagram is developed. Experimental data from a range of independent published sources is used for validation of the developed regime diagram.
Keywords: 44.35.+c      47.55.Kf      65.20.+      83.80.Hj     
Received: 15 April 2009      Published: 27 November 2009
PACS:  44.35.+c (Heat flow in multiphase systems)  
  47.55.Kf (Particle-laden flows)  
  65.20.+  
  83.80.Hj (Suspensions, dispersions, pastes, slurries, colloids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/124401       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/124401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. CHANDRASEKAR
S. SURESH
[1] Ahuja A S 1975 J. Appl. Phys. 46 3408
[2] Masuda H et al 1993 Netsu Bussei 4 227
[3] Choi S U S 1995 Developments and Applications ofNon-Newtonian Flows (New York: ASME) p 99
[4] Eastman J A, Choi S U S et al 1997 Enhanced ThermalConductivity through the Development of Nanofluids (Boston:Materials Research Society) p 3
[5] Lee S et al 1999 J. Heat Transfer 121 280
[6] Wang X et al 1999 J. Thermophys. Heat Transfer 13 474
[7] Murshed S M S et al 2008 Appl. Therm. Eng. 2817
[8] Chen H et al 2009 Particuology 7 151
[9] Xu J et al 2006 Chin. Phys. Lett. 23 2819
[10] Evans W et al 2008 Int. J. Heat Mass Transfer 51 1431
[11] Koo J and Kleinstreuer C 2004 J. Nanopart. Res. 6 577
[12] Chandrasekar M et al 2009 J. Nanosci. Nanotechnol. 9 533
[13] Jang S P and Choi S U S 2007 J. Heat Transfer 129 618
[14] Maxwell J C 1891 A Treatise on Electricity andMagnetism 3rd edn (Oxford: Clarendon)
[15] Shukla R K et al 2005 Study of the Effective ThermalConductivity of Nanofluids (Florida: ASME International MechanicalEngineering Congress and Exposition) p\,1
[16] Wang B X et al 2003 Int. J. Heat Mass Transfer 46 2665
[17] Eapen J, Li J and Yip S 2007 Phys. Rev. E 76062501
[18] Das S K, Putra N et al 2003 J. Heat Transfer 125 567
[19] Xie H Q et al 2002 J. Appl. Phys. 91 4568
[20] Mintsa H A, Roy G et al 2009 Int. J. Therm. Sci. 48 363
[21] Zhang X et al 2007 Exp. Therm. Fluid Sci. 31593
[22] Murshed S M S et al 2005 Int. J. Therm. Sci. 44 367
[23] Yoo D H et al 2007 Thermochim. Acta 455 66
[24] Zhu H, Zhang C et al 2006 Appl. Phys. Lett. 89 023123
[25] Li Y H et al 2008 Chin. Phys. Lett. 25 3319
Related articles from Frontiers Journals
[1] LV Hong, TANG Sheng-Li**, ZHOU Wen-Ping . Direct Numerical Simulation of Particle Migration in a Simple Shear Flow[J]. Chin. Phys. Lett., 2011, 28(8): 124401
[2] WEI Jin-Jia**, XUE Yan-Fang, ZHAO Jian-Fu, LI Jing . Bubble Behavior and Heat Transfer of Nucleate Pool Boiling on Micro-Pin-Finned Surface in Microgravity[J]. Chin. Phys. Lett., 2011, 28(1): 124401
[3] ZHAO Jian-Fu, LI Jing, YAN Na, WANG Shuang-Feng. Transition to Film Boiling in Microgravity: Influence of Subcooling[J]. Chin. Phys. Lett., 2010, 27(7): 124401
[4] LI Jing, LIU Zhao-Hui, WANG Han-Feng, CHEN Sheng, LIU Ya-Ming, HAN Hai-Feng, ZHENG Chu-Guang. Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow[J]. Chin. Phys. Lett., 2010, 27(6): 124401
[5] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 124401
[6] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 124401
[7] CAI Jun, HUAI Xiu-Lan. A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 124401
[8] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 124401
[9] LUO Xiao-Ping, CUI Z. F.. Modelling of Phase Change Heat Transfer System for Micro-channel and Chaos Simulation[J]. Chin. Phys. Lett., 2008, 25(6): 124401
[10] TANG Yi, PEI Jing, PAN Long-Fa, NI Yi, HU Hua, ZHANG Bu-Qing. Experiments of Multi-Level Read-Only Recording Using Readout Signal Wave-Shape Modulation[J]. Chin. Phys. Lett., 2008, 25(5): 124401
[11] YIN Tie-Nan, HUAI Xiu-Lan. Fourier and Wavelet Transform Analysis of Pressure Signals during Explosive Boiling[J]. Chin. Phys. Lett., 2008, 25(3): 124401
[12] HUAI Xiu-Lan, DONG Zhao-Yi, LI Zhi-Gang, YIN Tie-Nan, ZOU Yu,. A Novel Kinetic Model of Liquid Nitrogen's Explosive Boiling at the Initial Stage[J]. Chin. Phys. Lett., 2007, 24(9): 124401
[13] KU Xiao-Ke, LIN Jian-Zhong,. Orientational Distribution of Fibres in Sheared Fibre Suspensions[J]. Chin. Phys. Lett., 2007, 24(6): 124401
[14] WANG Hai-Peng, CHANG Jian, LUO Bing-Chi, WEI Bing-Bo. Determination of the Surface Tension of Liquid Fe 77.5 Cu13Mo 9.5 Ternary Monotectic Alloy[J]. Chin. Phys. Lett., 2007, 24(2): 124401
[15] MA Di, KUO Pao-Kuang, XU Xiao-Dong, ZHANG Shu-Yi. Determination of Thermal Conductivity of Liquids by a Multi-Point Laser Pump Method[J]. Chin. Phys. Lett., 2007, 24(11): 124401
Viewed
Full text


Abstract