Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 124501    DOI: 10.1088/0256-307X/26/12/124501
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Homotopy Analysis Approach to Periodic Solutions of a Nonlinear Jerk Equation
FENG Shao-Dong1, CHEN Li-Qun1,2
1Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 2000722Department of Mechanics, Shanghai University, Shanghai 200444
Cite this article:   
FENG Shao-Dong, CHEN Li-Qun 2009 Chin. Phys. Lett. 26 124501
Download: PDF(628KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The homotopy analysis method is applied to seek periodic solutions of a nonlinear jerk equation involving the third-order time-derivative. The periodic solutions can be approximated via an analytical series. An auxiliary parameter is introduced to control the convergence region of the solution series. Two numerical examples are presented to demonstrate the effectiveness of the homotopy analysis approach. The examples indicate that, by choosing a proper value of the auxiliary parameter, the first few terms in the solution series yield excellent results.
Keywords: 45.10.Hj      02.60.Cb     
Received: 09 June 2009      Published: 27 November 2009
PACS:  45.10.Hj (Perturbation and fractional calculus methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/124501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/124501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Shao-Dong
CHEN Li-Qun
[1] Schot S H 1978 Am. J. Phys. 46 1090
[2] Schot S H 1979 Math. Mag. 51 259
[3] Gottlieb H P W 1996 Am. J. Phys. 64 525
[4] Eichhorn R et al 1998 Phys. Rev. E 58 7151
[5] Malasoma J M 2000 Phys. Lett. A 264 383
[6] Gottlieb H P W 1998 Am. J. Phys. 66 903
[7] Gottlieb H P W 2004 J. Sound Vib. 271 671
[8] Gottlieb H P W 2006 J. Sound Vib. 297 243
[9] Gottlieb H P W 2009 J. Sound Vib. 322 1005
[10] Wu B S et al 2006 Phys. Lett. A 354 95
[11] Hu H 2008 Phys. Lett. A 372 4205
[12] Liao S J 1992 PhD Dissertation (Shanghai: Jiao TongUniversity) (in Chinese)
[13] Liao S J 2003 Beyond Perturbation: Introduction tothe Homotopy Analysis Method (Boca Raton: Chapman {\& Hall/CRCPress)
[14] Liao S J and Tan Y 2007 Studies Appl. Math. 119 297
[15] Liao S J 2009 Commun. Nonlinear Sci. Numer.Simulat. 14 983
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 124501
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 124501
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 124501
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 124501
[5] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 124501
[6] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 124501
[7] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 124501
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 124501
[9] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 124501
[10] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 124501
[11] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 124501
[12] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 124501
[13] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 124501
[14] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 124501
[15] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 124501
Viewed
Full text


Abstract