Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 124601    DOI: 10.1088/0256-307X/26/12/124601
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
An Extension of the Two-Dimensional JKR Theory to the Case with a Large Contact Width
CHEN Shao-Hua, PENG Zhi-Long
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190
Cite this article:   
CHEN Shao-Hua, PENG Zhi-Long 2009 Chin. Phys. Lett. 26 124601
Download: PDF(407KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the Hertz and JKR theories, parabolic assumptions for the rounded profiles of the sphere or cylinder are adopted under the condition that the contact radius (width) should be very small compared to the radius of the sphere or
cylinder. However, a large contact radius (width) is often found in experiments even under a zero external loading. We aim at extending the plane strain JKR theory to the case with a large contact width. The relation between the external loading and the contact width is given. Solutions for the Hertz, JKR and rounded-profile cases are compared and analyzed. It is found that when the ratio of a/R is approximately larger than about 0.4, the parabolic assumptions in the Hertz and JKR theories are no longer valid and the exact rounded profile function should be used.
Keywords: 46.55.+d      62.20.-x      04.20.Jb     
Received: 14 July 2009      Published: 27 November 2009
PACS:  46.55.+d (Tribology and mechanical contacts)  
  62.20.-x (Mechanical properties of solids)  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/124601       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/124601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Shao-Hua
PENG Zhi-Long
[1] Hertz H 1881 J. Reine Angew. Math. 92 156
[2] Johnson K L, Kendall K and Roberts A D 1971 Proc. R.Soc. London A 324 301
[3] Derjaguin B V, Muller V M and Toporov Y P 1975 J.Coll. Interface Sci. 53 314
[4] Maugis D 1992 J. Coll. Interface Sci. 150 243
[5] Barquins M 1988 J. Adhesion 26 1
[6] Carpick R W, Agrait N, Ogletree D F and Salmeron M 1996 Langmuir 12 3334
[7] Chaudhury M K, Weaver T, Hui C Y and Kramer E J 1996 J. Appl. Phys. 80 30
[8] Greenwood J A 1997 Proc. R. Soc. London A 4531277
[9] Baney J M and Hui C Y 1997 J. Adhesion Sci. Technol. 11 393
[10] Greenwood J A and Johnson K L 1998 J. Phys. D: Appl.Phys. 31 3279
[11] Guo X and Fan J 2009 Int. J. Solids Struct. 463607
[12] Chen S and Gao H 2006 J. Mech. Phys. Solids 54 1548
[13] Chen S and Gao H 2007 J. Mech. Phys. Solids 55 1001
[14] Chen S and Mi C 2009 Chin. Phys. Lett. 26108103
[15] Rimai D S, DeMejo L P and Bowen R C 1989 J. Appl.Phys. 66 3574
[16] DeMejo L P, Rimai D S and Bowen RC 1991 J. Adher.Sci. Technol. 5 959
[17] Maugis D 1995 Langmuir 11 679
[18] Johnson K L 1985 Contact Mechanics (Cambridge: CambridgeUniversity)
[19] Chen S and Gao H 2006 Proc. R. Soc. London A 462 211
[20] Rimai D S, Quesnel D J and Bowen R C 2001 Langmuir 17 6946
Related articles from Frontiers Journals
[1] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 124601
[2] SU Wei, LOU Shu-Qin, YIN Guo-Lu. Theoretical Study of the Structural and Thermodynamic Properties of Amorphous SiO2 and Amorphous SiO2 with an Oxygen Defect Center[J]. Chin. Phys. Lett., 2012, 29(6): 124601
[3] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 124601
[4] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 124601
[5] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 124601
[6] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 124601
[7] CHEN Jian-Song, GE Yun**, ZHANG Hui**. Torsional Vibrations of a Cantilever with Lateral Friction in a Resonance Friction Microscope[J]. Chin. Phys. Lett., 2012, 29(1): 124601
[8] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 124601
[9] JIN Min**, FANG Yong-Zheng, SHEN Hui, JIANG Guo-Jian, WANG Zhan-Yong, XU Jia-Yue . Mechanical Property Evaluation of GaAs Crystal for Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 124601
[10] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 124601
[11] SHAO Xi** . Prediction of a Low-Dense BC2N Phase[J]. Chin. Phys. Lett., 2011, 28(5): 124601
[12] CHEN Yao**, JIANG Yang, XU Pei-Qiang, MA Zi-Guang, WANG Xiao-Li, WANG Lu, JIA Hai-Qiang, CHEN Hong . Stress Control in GaN Grown on 6H-SiC by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(4): 124601
[13] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 124601
[14] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 124601
[15] O. Sahin**, A. R�, za Tuncdemir, H. Ali Cetinkara, H. Salih Guder, E. Sahin . Production and Mechanical Behaviour of Biomedical CoCrMo Alloy[J]. Chin. Phys. Lett., 2011, 28(12): 124601
Viewed
Full text


Abstract