Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 120301    DOI: 10.1088/0256-307X/26/12/120301
GENERAL |
Dynamics of Bright Solitons in Bose-Einstein Condensates with Complicated Potential
ZHAO Li-Chen, YANG Zhan-Ying, ZHANG Tao, SHI Kang-Jie
Department of Physics, Northwest University, Xi'an 710069
Cite this article:   
ZHAO Li-Chen, YANG Zhan-Ying, ZHANG Tao et al  2009 Chin. Phys. Lett. 26 120301
Download: PDF(795KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present analytical solutions of the one-dimensional nonlinear Schrodinger equations of Bose-Einstein condensates in an expulsive parabolic background with a complex potential and gravitational field, by performing the Darboux transformation from a trivial seed solution. It is shown that under a safe range of parameter, the shape of bright soliton can be controlled well by adjusting the experimental parameter of the ratio of axial oscillation to radial oscillation and feeding condensates from a thermal cloud. The gravitational field can change the contrail of the bright soliton trains without changing their peak and width.
Keywords: 03.75.Lm      02.30.Lk      05.45.Yv     
Received: 12 June 2009      Published: 27 November 2009
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  02.30.Lk  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/120301       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/120301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Li-Chen
YANG Zhan-Ying
ZHANG Tao
SHI Kang-Jie
[1] Davis K B et al 1995 Phys. Rev. Lett. 75 3969
[2] Ensher J R et al 1996 Phys. Rev. Lett. 774984
[3] Liang Z X et al 2005 Phys. Rev. Lett. 94050402
[4] Radha R and Ramesh V K 2007 Phys. Lett. A 37046
[5] Li Z D and Li Q Y 2007 Ann. Phys. 322 2545
[6] Kengne E and Liu X X 2008 J. Math. Phy. 49023503
[7] Hao R Y, Li L et al 2004 Opt. Commun. 236 79
[8] Zhang X F, Yang Q et al 2008 Phys. Rev. A 77023613
[9] Li B, Zhang X F et al 2008 Phys. Rev. A 78023608
[10] Kengne E and Talla P K 2006 J. Phys. B 393679
[11] Ponomarenko S A and Agrawal G P 2006 Phys. Rev.Lett. 97 013901
[12] Li H M and Song F Q 2007 Opt. Commun. 277 174
[13] Serkin V N et al 2007 Phys. Rev. Lett. 98074102
[14] Schreck F et al 2001 Phys. Rev. Lett. 87080403
[15] Burger S et al 1999 Phys. Rev. Lett. 83 5198
[16] Denschlag J et al 2000 Science 287 97
[17] Busch T and Anglin J R 2000 Phys. Rev. Lett. 84 2298
[18] Law C K et al 2000 Phys. Rev. Lett. 85 1598
[19] Anderson B P et al 2001 Phys. Rev. Lett. 862926
[20] Wu B et al 2002 Phys. Rev. Lett. 88 034101
[21] Strecker K E et al 2002 Nature 417 150
[22] Kevrekidis P G et al 2003 Phys. Rev. Lett. 90230401
[23] Khaykovich L et al 2002 Science 296 1290
[24] Wang D L et al 2007 Chin. Phys. Lett. 24 1817
[25] Chen Y S et al 2007 Chin. Phys. Lett. 24 35
[26] Zong F D and Zhang J F 2008 Chin. Phys. Lett. 25 2370
[27] Matthews M R et al 1999 Phys. Rev. Lett. 832498
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 120301
[2] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 120301
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 120301
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 120301
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 120301
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 120301
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 120301
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 120301
[9] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 120301
[10] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 120301
[11] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120301
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120301
[13] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120301
[14] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 120301
[15] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 120301
Viewed
Full text


Abstract