Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 120203    DOI: 10.1088/0256-307X/26/12/120203
GENERAL |
The Soliton Solutions of A (2+1)-Dimensional Integrable Equation of Classical Spin System
DENG Ming
Institute of Mathematics and Interdisciplinary Science, School of Mathematical Science, Capital Normal University, Beijing 100048
Cite this article:   
DENG Ming 2009 Chin. Phys. Lett. 26 120203
Download: PDF(1235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the bilinear equivalence expression of a (2+1)-dimensional integrable equation of a classical spin system. Based on this, we construct its single-soliton solutions and two-soliton solutions by Hirota's bilinear method. Meanwhile we show the evolution and propagation manners of two-solitons of the spin system graphically.
Keywords: 02.30.Ik      75.10.Hk     
Received: 01 June 2009      Published: 27 November 2009
PACS:  02.30.Ik (Integrable systems)  
  75.10.Hk (Classical spin models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/120203       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/120203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Ming
[1] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1
[2] Morris H C 1976 J. Math. Phys. 17 1870 Morris H C 1979 J. Phys. A: Math. Gen. 12 261
[3] Zhang D G and Yang G X 1990 J. Phys. A: Math. Gen. 23 2133
[4] Zhao W Z, Li M L, Qi Y H and Wu K 2005 Commun. Theor.Phys. 44 415
[5] Ishimori Y 1984 Prog. Theor. Phys. 72 33
[6] Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 J.Phys. A: Math. Gen. 31 9535
[7] Zhai Y, Albeverio S, Zhao W Z and Wu K 2006 J. Phys.A: Math. Gen. 39 2117
[8] Myrzakulov R, Vijayalakshmi S, Syzdykova R N andLakshmanan M 1998 J. Math. Phys. 39 2122
[9] Hirota R 1971 Phys. Rev. Lett. 27 1192
[10] Yang J R and Mao J J 2008 Chin. Phys. Lett. 25 1527
[11] Xu X G, Meng X H and Gao Y T 2008 Chin. Phys. Lett. 25 3890
[12] Zhao S L, Zhang D J and Chen D Y 2009 Chin. Phys.Lett. 26 030202
[13] You F C, Zhang J and Hao H H 2009 Chin. Phys. Lett. 26 090201
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 120203
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 120203
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 120203
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 120203
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 120203
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 120203
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 120203
[8] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 120203
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120203
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120203
[11] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 120203
[12] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 120203
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 120203
[14] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 120203
[15] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 120203
Viewed
Full text


Abstract