Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 108301    DOI: 10.1088/0256-307X/26/10/108301
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Mechanical Analogies of Fractional Elements
HU Kai-Xin, ZHU Ke-Qin
Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
HU Kai-Xin, ZHU Ke-Qin 2009 Chin. Phys. Lett. 26 108301
Download: PDF(195KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A Ffactional element model describes a special kind of viscoelastic material. Its stress is proportional to the fractional-order derivative of strain. Physically the mechanical analogies of fractional elements can be represented by spring-dashpot fractal networks. We introduce a constitutive operator in the constitutive equations of viscoelastic materials. To derive constitutive operators for spring-dashpot fractal networks, we use Heaviside operational calculus, which provides explicit answers not otherwise obtainable simply. Then the series-parallel formulas for the constitutive operator are derived. Using these formulas, a constitutive equation of fractional element with 1/2-order derivative is obtained. Finally we find the way to derive the constitutive equations with other fractional-order derivatives and their mechanical analogies.
Keywords: 83.60.Bc      46.35.+z      02.30.Vv     
Received: 05 May 2009      Published: 27 September 2009
PACS:  83.60.Bc (Linear viscoelasticity)  
  46.35.+z (Viscoelasticity, plasticity, viscoplasticity)  
  02.30.Vv (Operational calculus)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/108301       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/108301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Kai-Xin
ZHU Ke-Qin
Related articles from Frontiers Journals
[1] YANG Fan, ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop[J]. Chin. Phys. Lett., 2010, 27(3): 108301
[2] YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem?[J]. Chin. Phys. Lett., 2010, 27(12): 108301
[3] HOU Ri-Li, , PENG Jian-Xiang, JING Fu-Qian, ZHANG Jian-Hua, ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures[J]. Chin. Phys. Lett., 2009, 26(9): 108301
[4] NIE Jian-Xin, YANG Ding-Hui. Viscoelastic BISQ Model for Low-Permeability Sandstone with Clay[J]. Chin. Phys. Lett., 2008, 25(8): 108301
[5] CHEN Da-Nian, FAN Chun-Lei, HU Jin-Wei, WU Shan-Xing, WANG Huan-Ran, TAN Hua, YU Yu-Ying. Mechanical Yielding and Strength Behaviour of OFHC Copper in Planar Shock Waves[J]. Chin. Phys. Lett., 2007, 24(3): 108301
[6] YU Yu-Ying, TAN Hua, DAI Cheng-Da, HU Jian-Bo, CHEN Da-Nian. Sound Velocity and Release Behaviour of Shock-Compressed LY12 Al[J]. Chin. Phys. Lett., 2005, 22(7): 108301
[7] CHENG Yuan-Feng, YANG Ding-Hui, YANG Hui-Zhu. Biot/Squirt Model in Viscoelastic Porous Media[J]. Chin. Phys. Lett., 2002, 19(3): 108301
Viewed
Full text


Abstract