Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 108103    DOI: 10.1088/0256-307X/26/10/108103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Friction Properties of Bio-mimetic Nano-fibrillar Arrays
CHEN Shao-Hua, MI Chun-Hui
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
CHEN Shao-Hua, MI Chun-Hui 2009 Chin. Phys. Lett. 26 108103
Download: PDF(627KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nano-fibrillar arrays are fabricated using polystyrene materials. The average diameter of each fiber is about 300nm. Experiments show that such a fibrillar surface possesses a relatively hydrophobic feature with a water contact angle of 142°. Nanoscale friction properties are mainly focused on. It is found that the friction force of polystyrene nano-fibrillar surfaces is obviously enhanced in contrast to polystyrene smooth surfaces. The apparent coefficient of friction increases with the applied load, but is independent of the scanning speed. An interesting observation is that the friction force increases almost linearly with the real contact area, which abides by the fundamental Bowden-Tabor law of nano-scale friction.
Keywords: 81.07.-b      81.07.Lk      46.55.+d     
Received: 05 June 2009      Published: 27 September 2009
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.07.Lk (Nanocontacts)  
  46.55.+d (Tribology and mechanical contacts)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/108103       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/108103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Shao-Hua
MI Chun-Hui
[1] Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny TW, Fearing R and Full R J 2000 Nature 405 681
[2] Huber G, Gorb S N, Spolenak R and Arzt E 2005 Biol.Lett. 1 2
[3] Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R,Sponberg S, Kenny T W, Fearing R, Israelachvili J N and Full R J2002 Proc. Natl. Acad. Sci. U.S.A. 99 12252
[4] Arzt E., Gorb S and Spolenak R 2003 Proc. Natl. Acad.Sci. U.S.A. 100 10603
[5] Chen S H and Gao H J 2007 J. Mech. Phys. Solids 55 1001
[6] Chen S H and Soh A K 2008 J. R. Soc. Interface 5 373
[7] Glassmaker N J, Jagota A, Hui CY and Kim J 2004 J. R.Soc. Interface 1 23
[8] Majidi C, Groff R E, Maeno Y, Schubert B, Baek S, Bush B,Maboudian R, Gravish N, Wilinson M, Autumn K and Fearing R S 2006 Phys. Rev. Lett. 97 076103
[9] Kim S, Aksak B and Sitti M 2007 Appl. Phys. Lett. 91 221913
[10] Aksak B, Sitti M, Cassell A, Li J, Meyyappan M and CallenP 2007 Appl. Phys. Lett. 91 061906
[11] Yao H and Gao H 2006 J. Mech. Phys. Solids 541120
[12] Wang P, Yang H J, Wang H B, Li H, Wang X Y, Wang Y, Lu JH, Li B, Zhang Y and Hu J 2008 Chin. Phys. Lett. 25 2407
[13] Johnson K L, Kendall K and Roberts A D 1971 Proc. R.Soc. London A 324 301
[14] Yoon E S, Singh R A, Oh H J and Kong H 2005 Wear 259 1424
Related articles from Frontiers Journals
[1] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 108103
[2] LU Ran,JIANG Gen-Shan,LI Bin,ZHAO Quan-Liang,ZHANG De-Qing,YUAN Jie,CAO Mao-Sheng**. Electrical Properties of Lead Zirconate Titanate Thick Film Containing Micro- and Nano-Crystalline Particles[J]. Chin. Phys. Lett., 2012, 29(5): 108103
[3] CHEN Jian-Song, GE Yun**, ZHANG Hui**. Torsional Vibrations of a Cantilever with Lateral Friction in a Resonance Friction Microscope[J]. Chin. Phys. Lett., 2012, 29(1): 108103
[4] LUO Bing-Cheng, CHEN Chang-Le**, FAN Fei, JIN Ke-Xin. The Photovoltaic Properties of BiFeO3La0.7Sr0.3MnO3 Heterostructures[J]. Chin. Phys. Lett., 2012, 29(1): 108103
[5] YANG Lin-Hong, DONG Hong-Xing, SUN Zheng, SUN Liao-Xin, SHEN Xue-Chu, CHEN Zhang-Hai** . Temperature-Induced Phase Transition of In2O3 from a Rhombohedral Structure to a Body-Centered Cubic Structure[J]. Chin. Phys. Lett., 2011, 28(8): 108103
[6] LIU Hai-Tao, ZHONG Jia-Song, LIU Bing-Feng, LIANG Xiao-Juan, YANG Xin-Yu, JIN Huai-Dong, YANG Fan, XIANG Wei-Dong, ** . L-cystine-Assisted Growth and Mechanism of CuInS2 Nanocrystallines via Solvothermal Process[J]. Chin. Phys. Lett., 2011, 28(5): 108103
[7] HOU Zhi-Ling**, ZHOU Hai-Feng, YUAN Jie, KANG Yu-Qing, YANG Hui-Jing, JIN Hai-Bo, CAO Mao-Sheng** . Enhanced Ferromagnetism and Microwave Dielectric Properties of Bi0.95Y0.05FeO3 Nanocrystals[J]. Chin. Phys. Lett., 2011, 28(3): 108103
[8] YANG Xiao-Guang, YANG Tao**, WANG Ke-Fan, GU Yong-Xian, JI Hai-Ming, XU Peng-Fei, NI Hai-Qiao, NIU Zhi-Chuan, WANG Xiao-Dong, CHEN Yan-Ling, WANG Zhan-Guo . Intermediate-Band Solar Cells Based on InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(3): 108103
[9] LI Zheng-Lin, DENG Shao-Zhi, XU Ning-Sheng, LIU Fei, CHEN Jun. Enhanced Field Emission from Large-Area Arrays of W18O49 Pencil-Like Nanostructure[J]. Chin. Phys. Lett., 2010, 27(6): 108103
[10] REN Kun, RAO Feng, SONG Zhi-Tang, WU Liang-Cai, ZHOU Xi-Lin, XIA Meng-Jiao, LIU Bo, FENG Song-Lin, XI Wei, YAO Dong-Ning, CHEN Bomy. Si3.5Sb2Te3 Phase Change Material for Low-Power Phase Change Memory Application[J]. Chin. Phys. Lett., 2010, 27(10): 108103
[11] CHEN Shao-Hua, CHEN Pei-Jian. Nanoadhesion of a Power-Law Graded Elastic Material[J]. Chin. Phys. Lett., 2010, 27(10): 108103
[12] XIANG Jun, SHEN Xiang-Qian, SONG Fu-Zhan, MENG Xian-Feng. Fabrication and Characterization of Mn0.5Zn0.5Fe2O4 Magnetic Nanofibers[J]. Chin. Phys. Lett., 2010, 27(1): 108103
[13] CAO Bing, ZHANG Wei, HUAI Ping, ZHU Zhi-Yuan. Theoretical Study on the Propagation of Acoustic Phonon Modes in Single-Wall Carbon Nanotubes by Different Potential Models[J]. Chin. Phys. Lett., 2009, 26(8): 108103
[14] ZHANG Yang, YU Da-Peng. Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures[J]. Chin. Phys. Lett., 2009, 26(8): 108103
[15] ZHU Shao-Peng, TANG Shao-Chun, MENG Xiang-Kang. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method[J]. Chin. Phys. Lett., 2009, 26(7): 108103
Viewed
Full text


Abstract