CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Memory Effect of Metal-Oxide-Silicon Capacitors with Self-Assembly Double-Layer Au Nanocrystals Embedded in Atomic-Layer-Deposited HfO2 Dielectric |
HUANG Yue1, GOU Hong-Yan1, SUN Qing-Qing1, DING Shi-Jin1, ZHANG Wei1, ZHANG Shi-Li1,2 |
1State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 2004332School of Information and Communication, KTH, Royal Institute of Technology, Electrum 229, SE-164 40 Kista, Sweden |
|
Cite this article: |
HUANG Yue, GOU Hong-Yan, SUN Qing-Qing et al 2009 Chin. Phys. Lett. 26 108102 |
|
|
Abstract We report the chemical self-assembly growth of Au nanocrystals on atomic-layer-deposited HfO2 films aminosilanized by (3-Aminopropyl)-trimethoxysilane aforehand for memory applications. The resulting Au nanocrystals show a density of about 4×1011cm-2 and a diameter range of 5-8nm. The metal-oxide-silicon capacitor with double-layer Au nanocrystals embedded in HfO2 dielectric exhibits a large C-V hysteresis window of 11.9V for ± 11V gate voltage sweeps at 1MHz, a flat-band voltage shift of 1.5V after the electrical stress under 7V for 1ms, a leakage current density of 2.9×10-8 A/cm-2 at 9V and room temperature. Compared to single-layer Au nanocrystals, the double-layer Au nanocrystals increase the hysteresis window significantly, and the underlying mechanism is thus discussed.
|
Keywords:
81.07.Bc
81.16.Dn
82.25.Hv
|
|
Received: 30 March 2009
Published: 27 September 2009
|
|
|
|
|
|
[1] Wang C C et al 2006 J. Appl. Phys. 99 026102 [2] Sliva H, Kim M K et al 2004 MRS Bull. 29 845 [3] Tseng J Y et al 2004 Appl. Phys. Lett. 85 2595 [4] Mao P et al 2009 Chin. Phys. Lett. 26 046102 [5] Hanafi H I, Tiwari S and Khan I 1996 IEEE Trans.Electron Devices 43 1553 [6] Liu Z T et al 2002 IEEE Trans. Electron Devices 49 1606 [7] Wang C C et al 2007 J. Phys. D 40 1673 [8] Guan W H et al 2007 J. Phys. D 40 2754 [9] Wang C C et al 2007 Appl. Phys. Lett. 90182101 [10] Punchaipetch P et al 2006 Appl. Phys. Lett. 89 093502 [11] Lee J J, Kwong D L 2005 IEEE Trans. Electron.Devices 52 507 [12] Huo S J, Li Q X, and Yan Y G 2005 J. Phys. Chem. B 109 15985 [13] Lee C, Anirdh G S, and Edwin C K 2003 Tech. Dig.Intl. Electron Device Meet. (Washington DC, USA 8--10 December 2003) p 557 [14] Huang Y, Liao Z W, Gou H Y, Ding S J and Zhang W 2009 Chin. J. Mater. Res. 23 13 (in Chinese) [15] Kouvatsos D N, Sougleridis V L and Nassiopoulou A G 2003 Appl. Phys. Lett. 82 397 [16] Teo L W, Choi W K, Chim W K, Ho V, Moey C M, Tay M S,Heng C L, Lei Y, Antoniadis D A and Fitzgerald E A 2002 Appl.Phys. Lett. 81 3639 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|