Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 100501    DOI: 10.1088/0256-307X/26/10/100501
GENERAL |
Chaos in the Fractional Order Generalized Lorenz Canonical Form
YANG Yun-Qing1, CHEN Yong1,2
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 2000622Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo 315211
Cite this article:   
YANG Yun-Qing, CHEN Yong 2009 Chin. Phys. Lett. 26 100501
Download: PDF(861KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fractional-order generalized Lorenz system is constructed and numerically investigated. Chaotic behavior existing in the fractional-order generalized Lorenz system is found. The numerical simulations and interesting figures are performed.
Keywords: 05.45.-a      05.45.Xt     
Received: 06 May 2009      Published: 27 September 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/100501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yun-Qing
CHEN Yong
[1] Leibniz G W 1962 Mathematische Schriften 1849(Berlin: Olms Verlag Hildesheim) 2 301
[2]Sabatier J, Agrawal O P and Tenreiro Machado J A 2007 Advances in Fractional Calculus: Theoretical Developments andApplications in Physics and Engineering (Netherlands: Springer)
[3]Samko S G, Klibas A A and Marichev O I 1993 FractionalIntegrals and Derivatives: Theory and Applications (New York:Gordon and Breach Science Publishers)
[4]Diethelm K, Ford N J and Freed A D 2002 Nonlin. Dyn. 29 3
[5]Chen Y and Yan Z 2003 Appl. Math. Mech. 24 256
[6]Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[7]Hartley T T, Lorenzo C F and Qammer H K 1995 IEEETrans Circuits and Systems I 42 485
[8]Yu Y, Li H X, Wang S and Yu J 2009 Chaos Solitons andFractals 22 1181
[9]Deng W H and Li C P 2005 Physica A 353 61
[10]Li C and Peng J 2004 Chaos Solitons and Fractals 22 443
[11]Wang X Y and Wang M J 2007 Chaos 17 033106
[12]Celikovsky S and Chen G 2002 Int. J. Bifurcation andChaos 12 1789
[13]Celikovsky S and Chen G 2005 Chaos Solitons andFractals 26 1271
[14]Shimizu T and Morioka N 1976 Phys. Lett. A 76201
[15]L\"{u Z S and Duan L X 2009 Chin. Phys. Lett. 26 050504
[16]Lorenz E N 1963 Atmos J Sci 20 130
[17]Liu L, Liu C X and Zhang Y B 2007 Chin. Phys. Lett. 24 2756
[18]Mossa Al-Sawalha and Noorani M S M 2008 Chin. Phys.Lett. 25 1217
[19]L\"{u J and Chen G 2002 Int. J. Bifurcation andChaos 12 2917
[20]Bao B C and Liu Z 2008 Chin. Phys. Lett. 252396
[21]Chen G and Ueta T 1999 Int. J. Bifurcation and Chaos 9 1465
[22]Yang Y and Chen Y 2009 Chaos, Solitons and Fractals 39 2378
[23]Yan Z 2005 Chaos 15 023902
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 100501
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 100501
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 100501
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 100501
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 100501
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 100501
Viewed
Full text


Abstract