Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 100402    DOI: 10.1088/0256-307X/26/10/100402
GENERAL |
Thermodynamic Properties of Higher-Dimensional RN Black Holes
WEI Yi-Huan
Department of Physics, Bohai University, Jinzhou 121000
Cite this article:   
WEI Yi-Huan 2009 Chin. Phys. Lett. 26 100402
Download: PDF(176KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A general calculation formula of the heat capacity for the HRN black holes is derived. The heat capacities for Q, Φ+ and r- fixed are obtained. Assuming that the charge-mass ratio of fluctuation modes does not exceed the extremal value, the minimum charge-mass ratio of the black holes for which the heat capacity is positive is determined.
Keywords: 04.70.Dy      04.70.-s     
Received: 29 June 2009      Published: 27 September 2009
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.70.-s (Physics of black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/100402       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/100402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Yi-Huan
[1] Hawking S W 1972 Commun Math. Phys. 25 152
[2] Hawking S W 1975 Commun Math. Phys. 43 199
[3] Bardeen J M, Carter B and Hawking S W 1973 Commun.Math. Phys. 31 161
[4] Smarr L 1973 Phys. Rev. Lett. 30 71
[5] Jacobson T 1995 Phys. Rev. Lett. 75 1260
[6] Eling C, Guedens R and Jacobson T 2006 Phys. Rev.Lett. 96 121301
[7] Hayward S A 2004 Phys. Rev. Lett. 93 251101
[8] Ashtekar A and Krishnan B 2002 Phys. Rev. Lett. 89 261101
[9] Gong Y and Wang A 2007 Phys. Rev. Lett. 99211301
[10] Rogatko M 2007 Phys. Rev. D 75 124015
[11] Padmanabhan T 2005 Phys. Rept. 406 49
[12] Padmanabhan T 2002 Class. Quan. Grav. 19 5387
[13] Padmanabhan T 2004 Class. Quant. Grav. 214485
[14] Akbar M and Cai R G 2007 Phys. Lett. B 648243
[15] Cai R G and Cao L M 2007 Phys. Rev. D 75064008
[16] Sheykhi A, Wang B and Cai R G 2007 Phys. Rev. D 76 023515
[17] He T M and Zhang J Y 2007 Chin. Phys. Lett. 24 3336
[18] Jiang K X, Ke S M, Peng D T and Feng J 2009 Chin.Phys. Lett. 26 070401
[19] Weinhold F 1975 J. Chem. Phys. 63 2479
[20] Ruppeiner G 1979 Phys. Rev. A 20 1608
[21] Ruppeiner G 1995 Rev. Mod. Phys. 67 605
[22] Mrugala R 1984 Physica A 125 631 Salamon P, Nulton J D and Ihrig E 1984 J. Chem. Phys. 80 436
[23] Davies P C W 1977 Proc. Roy. Soc. Lond. A 353499 Davies P C W 1989 Class. Quant. Grav. 6 1909
[24] {\AAman J E, Bengtsson I and Pidokrajt N 2003 Gen.Rel. Grav. 35 1733
[25] Quevedo H 2007 J. Math. Phys. 48 013506
[26] Shen J, Cai R G, Wang B, Su R K 2005 Int. J. Mod.Phys. A 22 11
[27] Wei Y H 2008 Chin. Phys. Lett. 25 2782
[28] Gibbons G W, Horowitz G T and Townsend P K 1995 Class. Quantum Grav. 12 297
[29] Cai R G 1998 J. Korean Phys. Soc. 33 S477
[30] Quevedo H and S\'{anchez A 2008 J. High EnergyPhys. 0805 034
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 100402
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 100402
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 100402
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 100402
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 100402
[6] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 100402
[7] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 100402
[8] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 100402
[9] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 100402
[10] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 100402
[11] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 100402
[12] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 100402
[13] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 100402
[14] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 100402
[15] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 100402
Viewed
Full text


Abstract