Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 010502    DOI: 10.1088/0256-307X/26/1/010502
GENERAL |
Criticality of Epidemic Spreading in Mobile Individuals Mediated by Environment
HE Min-Hua, ZHANG Duan-Ming, FANG Pin-Jie, LI Zhi-Cong, WANG Hai-Yan
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
HE Min-Hua, ZHANG Duan-Ming, FANG Pin-Jie et al  2009 Chin. Phys. Lett. 26 010502
Download: PDF(357KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the critical behaviour of an epidemical model in a diffusive population mediated by a static vector environment on a 2D network. It is found that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. Finite-size and
short-time dynamic scaling relations are used to determine the critical population density and the critical exponents characterizing the behaviour near the critical point. The results are compatible with the universality class of directed percolation coupled to a conserved diffusive field with equal diffusion
constants.
Keywords: 05.10.-a      05.50.+q      87.19.Xx     
Received: 07 June 2008      Published: 24 December 2008
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.50.+q (Lattice theory and statistics)  
  87.19.Xx  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/010502       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/010502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Min-Hua
ZHANG Duan-Ming
FANG Pin-Jie
LI Zhi-Cong
WANG Hai-Yan
[1] Zhou T, Fu Z Q and Wang B H 2006 Prog. Nat. Sci. 16 452
[2] Park K, Lai Y C, Gupte S and Kim J W 2006 Chaos 16 015105
[3] Nishikawa T, Motter A E, Lai Y C and Hoppensteadt F C 2003 Phys. Rev. Lett. 91 014101
[4] Motter A E, Zhou C and Kurths J 2005 Phys. Rev. E. 71 016116
[5] Grenfell B T, Bj{\ornstad O N and Kappey J 2001 Nature 414 716
[6] Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[7] Wang X F and Chen G 2002 Int. J. Bifur. ChaosAppl. Sci. Eng. 12 187
[8] Donetti L, Hurtado P I and Mu\~{noz M A 2005 Phys.Rev. Lett. 95 188701
[9] Kuperman M and Abramson G 2001 Phys. Rev. Lett. 86 2909
[10] Yan G, Fu Z Q, Ren J and Wang W X 2007 Phys. Rev.E. 75 016108
[11] Romualdo P S and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[12] Zanette D H 2001 Phys. Rev. E. 64 050901
[13] Buscarino A, Fortuna L, Frasca M and Rizzo A 2006 Chaos 16 015116
[14] Vicsek T, Czirok A, E. Ben-Jacob, Cohen I and Shochet O1995 Phys. Rev. Lett. 75 1226.
[15] Michael E, Bundy D A P and Grenfell B T 1996 Parasitology 112 409
[16] Hotez P J, Molyneux D H, Fenwick A, Ottesen E, Sachs S Eand Sachs JD 2006 Plos Med 3 576--584.
[17] Castellano C and Romualdo P S 2006 Phys. Rev. Lett. 96 038701
[18] Ramasco J J, Mu\~{noz M A and da Silva Santos C A 2004 Phys. Rev. E 69 045105(R)
[19] Dornic I, Chate H and Mu\~{noz M A 2005 Phys.Rev. Lett. 94 100601
[20] Odor G 2004 Rev. Mod. Phys. 76 663
[21] Romualdo P S and Sole R V 2001 Phys. Rev. E 64 051909
Related articles from Frontiers Journals
[1] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 010502
[2] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 010502
[3] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 010502
[4] LI Rong, WU Xin** . Two New Fourth-Order Three-Stage Symplectic Integrators[J]. Chin. Phys. Lett., 2011, 28(7): 010502
[5] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 010502
[6] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 010502
[7] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 010502
[8] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 010502
[9] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 010502
[10] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 010502
[11] LIU Ping, LOU Sen-Yue,. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System[J]. Chin. Phys. Lett., 2010, 27(2): 010502
[12] TAN Yun-Liang, TENG Gui-Rong, ZHANG Ze. A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability[J]. Chin. Phys. Lett., 2010, 27(1): 010502
[13] SUN Rong-Sheng, HUA Da-Yin. Synchronization of Local Oscillations in a Spatial Rock-Scissors-Paper Game Model[J]. Chin. Phys. Lett., 2009, 26(8): 010502
[14] Osama Yusuf Ababneh, Rokiah@Rozita Ahmad. Construction of Third-Order Diagonal Implicit Runge-Kutta Methods for Stiff Problems[J]. Chin. Phys. Lett., 2009, 26(8): 010502
[15] XI Xiao-Qiang, LIU Wu-Ming. Generation of Long-Distance Entanglement in Spin System[J]. Chin. Phys. Lett., 2008, 25(7): 010502
Viewed
Full text


Abstract