Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 010501    DOI: 10.1088/0256-307X/26/1/010501
GENERAL |
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
SUN Mei, ZENG Chang-Yan, TIAN Li-Xin
Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang 212013
Cite this article:   
SUN Mei, ZENG Chang-Yan, TIAN Li-Xin 2009 Chin. Phys. Lett. 26 010501
Download: PDF(249KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382(2007)672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand--supply of energy resource in some regions of China.

Keywords: 05.45.Xt      89.75.Hc      89.75.-k     
Received: 16 September 2008      Published: 24 December 2008
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.Hc (Networks and genealogical trees)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/010501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Mei
ZENG Chang-Yan
TIAN Li-Xin
[1] Barahona M et al 2002 Phys. Rev. Lett. 89054101
[2] Zhou J, Chen T P and Xiang L 2005 Circuits, Systemsand Signal Processing 24 599
[3] Amritkar R E et al 2006 Phys. Rev. Lett. 96258102
[4] Li Z and Chen G R 2004 Phys. Lett. A 326 333
[5] Sorrentino F et al 2006 Physica D 224 123
[6] Gao H J et al 2006 Phys. Lett. A 360 263
[7] Hung Y C et al 2008 Phys. Rev. E 77 016202
[8] Xiao Y Z, Xu W, Li X C et al 2007 Chaos 17033118
[9] Batista C A S et al 2007 Phys. Rev. E 76016218
[10] Zhou J, Lu J A and L\"{u J H 2008 Automatica 44 996
[11] Li Y et al 2008 Chin. Phys. Lett. 25 874
[12] Li C P et al 2007 Phys. Rev. E 76 046204
[13] Gonzalez-Miranda J M 1996 Phys. Rev. E 535656
[14] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[15] Xu D L, Li Z and Bishop R 2001 Chaos 11 439
[16] Xu D L 2001 Phys. Rev. E 63 027201.
[17] Ju H. P 2007 Chaos, Solitons Fractals 341552
[18] Hu M F and Xu Z Y 2008 Nonlinear Analysis: RWA 9 1253
[19] Hu M F et al 2007 Physica A 381 457
[20] Guo L X et al 2008 Chinese Physics Letters 252816
[21] Zhou J, Xiang L and Liu Z R 2007 Physica A 385 729
[22] Huang X and Cao J D 2006 Nonlinearity 192797
[23]Zhou J et al 2006 IEEE. Trans. Circuit Syst. 53 733
[24] Meng J and Wang X Y 2008 Mod. Phys. Lett. B 22 181
[25] Sun M et al 2007 Chaos, Solitons Fractals 31879
[26] Lu J and Cao J 2007 Physica A 382 672
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 010501
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[3] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 010501
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 010501
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 010501
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[7] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[8] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[9] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[10] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[11] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 010501
[12] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 010501
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 010501
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 010501
[15] GAO Zong-Mao, GU Jiao, LI Wei. Epidemic Spreading in a Multi-compartment System[J]. Chin. Phys. Lett., 2012, 29(2): 010501
Viewed
Full text


Abstract