Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 010203    DOI: 10.1088/0256-307X/26/1/010203
GENERAL |
Generalized Mei Conserved Quantity of Mei Symmetry for Mechanico-electrical Systems with Nonholonomic Controllable Constraints
XIA Li-Li, ZHAO Xian-Lin
Department of Physics, Henan Institute of Education, Zhengzhou 450014
Cite this article:   
XIA Li-Li, ZHAO Xian-Lin 2009 Chin. Phys. Lett. 26 010203
Download: PDF(206KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract On the basis of the total time derivative along the trajectory, we study the generalized Mei conserved quantity of Mei symmetry for mechanico-electrical systems with nonholonomic controllable constraints. Firstly, the definition and criterion of Mei symmetry for mechanico-electrical systems with nonholonomic controllable constraints are presented. Secondly, a coordination function is introduced, and the conditions of existence of generalized Mei conserved quantity as well as the forms are proposed. Lastly, an example is given to illustrate the application of the results.
Keywords: 02.20.Sv      11.30.-j      45.20.Jj     
Received: 25 July 2008      Published: 24 December 2008
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/010203       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/010203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Li-Li
ZHAO Xian-Lin
[1] Noether A E 1918 Math. Phys. KI II 235
[2] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[3] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[4] Luo S K 2002 Chin. Phys. Lett. 19 449
[5] Luo S K 2003 Chin. Phys. Lett. 20 597
[6] Mei F X 2001 Chin. Phys. 10 177
[7] Mei F X 2003 Acta Phys. Sin. 52 1048 (inChinese)
[8] Zheng S W, Xie J F and Jia L Q 2006 Chin. Phys.Lett. 23 2924
[9] Luo S K 2007 Chin. Phys. Lett. 24 3017
[10] Luo S K 2007 Chin. Phys. Lett. 24 2463
[11] Zheng S W, Xie J F and Zhang Q H 2007 Chin. Phys.Lett. 24 2164
[12] Zhao W J, Weng Y Q and Fu J L 2007 Chin. Phys.Lett. 24 2773
[13] Xia L L and Li Y C 2007 Commun. Theor. Phys. 48 23
[14] Xia L L, Li Y C, Wang J and Hou Q B 2006 Acta Phys.Sin. 55 4995 (in Chinese)
[15] Xia L L and Li Y C 2007 Chin. Phys. 16 1516
[16] Qiu J J 1992 Analysis Mechanics ofMechanico-Electrical System (Beijing: Science Press) p 308 (inChinese)
[17] Mei F X, Liu D and Luo Y 1991 Advanced AnalyticalMechanics (Beijing: Beijing Institute of Technology Press) p 349(in Chinese)
[18] Luo S K and Zhang Y F et al 2008 Advances in theStudy of Dynamics of Constrained Mechanics Systems (Beijing;Science Press) (in Chinese)
[19] Zheng S W, Fu J L and Li X H 2005 Acta Phys. Sin. 54 5511 (in Chinese)
[20] Li Y C, Xia L L, Liu B, Jiao Z Y and Wand X M 2008 Chin. Phys. 17 1545
[21] Fu J L, Wang X J and Xie F P 2008 Chin. Phys.Lett. 25 2413
[22] Fang J H, Ding N and Wang P 2007 Chin. Phys. 16 887
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 010203
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 010203
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 010203
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 010203
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 010203
[6] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 010203
[7] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 010203
[8] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 010203
[9] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 010203
[10] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 010203
[11] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 010203
[12] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 010203
[13] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 010203
[14] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 010203
[15] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 010203
Viewed
Full text


Abstract