Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 010204    DOI: 10.1088/0256-307X/26/1/010204
GENERAL |
Approximate Solution of Homotopic Mapping to Solitary Wave for Generalized Nonlinear KdV System
MO Jia-Qi
1Department of Mathematics, Anhui Normal University, Wuhu 2410002Division of Computational Science, E-Institutes of Shanghai Universities at Shanghai Jiaotong University, Shanghai 200240
Cite this article:   
MO Jia-Qi 2009 Chin. Phys. Lett. 26 010204
Download: PDF(177KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study a generalized nonlinear KdV system is studied by using the homotopic mapping method. Firstly, a homotopic mapping transform is constructed; secondly, the suitable initial approximation is selected; then the homotopic mapping is used. The accuracy of the approximate solution for the solitary wave is obtained. From the obtained approximate solution, the homotopic mapping method exhibits a good accuracy.
Keywords: 02.30.Jr      02.30.Mv      02.60.Lj      02.30.Sa     
Received: 01 September 2008      Published: 24 December 2008
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Mv (Approximations and expansions)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.30.Sa (Functional analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/010204       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/010204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MO Jia-Qi
[1] Ma S H, Qiang J Y and Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese)
[2] Ma S H, Qiang J Y, Fang and J P 2007 Commun. Theor.Phys. 48 662
[3] Loutsenko I 2006 Commun. Math. Phys. 268 465
[4] Gedalin M 1998 Phys. Plasmas 5 127
[5] Parkes E J 2008 Chaos Solitons Fractals 38 154
[6] Li X Z and Wang M L 2007 Phys. Lett. A 361 115
[7] Wang M L 1995 Phys. Lett. A 199 169
[8] Sirendaoreji J S 2003 Phys. Lett. A 309 387
[9] McPhaden M J, Zhang D 2002 Nature 415 603
[10] Gu D F and Philander S G H 1997 Science 275805
[11] Pan L X, Zuo W M and Yan J R 2005 Acta Phys. Sin 54 1 (in Chinese)
[12] Liao S J 2004 Beyond Perturbation: Introduction tothe Homotopy Analysis Method (New York: CRC)
[13] He J H 2002 Approximate Analytical Methods inEngineering and Sciences (Shengzhou: Henan Science and TechnologyPress) (in Chinese)
[14] Ni W M and Wei J C 2006 J. Differ. Equations 221 158
[15] Bartier J P 2006 Asymptotic Anal. 46 325
[16] Llibre J and de Silva P R 2007 J. Dyn. Differ.Equations 19 309
[17] Guarguaglini F R and Natalini R 2007 Commun. PartialDiffer. Equations 32 163
[18] Mo J Q 1989 Sci. Chin. A 32 1306
[19] Mo J Q and Lin W T 2008 J. Sys. Sci. Complexity 20 119
[20] Mo J Q and Wang H 2007 Acta Ecolog. Sin. 274366
[21] Mo J Q, Zhu J and Wang H 2003 Prog. Nat. Sci. 13 768
[22] Mo J Q, Zhang W J and He M 2007 Acta Phys. Sin. 56 1843 (in Chinese)
[23] Mo J Q, Zhang W J and Chen X F 2007 Acta Phys.Sin. 56 6169 (in Chinese)
[24] Mo J Q, Zhang W J and He M 2006 Acta Phys. Sin. 55 3233 (in Chinese)
[25] Mo J Q, Lin W T and Wang H 2008 Chin. GeographicalSci 18 193
[26] Mo J Q, Lin W T and Wang H 2007 Prog. Nat. Sci. 17 230
[27] Mo J Q, Lin W T and Lin Y H 2007 Acta Phys. Sin. 56 3127 (in Chinese)
[28] Mo J Q, Wang H, Lin W T and Lin Y H 2006 Chin. Phys 15 671
[29] Mo J Q, Lin W T and Wang H 2007 Chin. Phys. 16 951
[30] Mo J Q and Lin W T 2008 Chin. Phys. 17 370
[31] Ma S H, Fang J P and Zheng C L 2008 Chin. Phys. 17 2767
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 010204
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 010204
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 010204
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 010204
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 010204
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 010204
[7] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 010204
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 010204
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 010204
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 010204
[11] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 010204
[12] YAO Jing-Su**, CHEN Li-Hua, WEN Zhao-Hui, MO Jia-Qi, **. Solving Method for the Single-Kink Soliton Solution to a Disturbed Coupled Burgers System[J]. Chin. Phys. Lett., 2011, 28(8): 010204
[13] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 010204
[14] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010204
[15] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010204
Viewed
Full text


Abstract