Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3397-3399    DOI:
Original Articles |
Magnetoresistance of Multiwalled Carbon Nanotube Yarns
SHENG Lei-Mei, GAO Wei, CAO Shi-Xun, ZHANG Jin-Cang
Department of Physics, Shanghai University, Shanghai 200444
Cite this article:   
SHENG Lei-Mei, GAO Wei, CAO Shi-Xun et al  2008 Chin. Phys. Lett. 25 3397-3399
Download: PDF(2464KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We measure zero-field resistivity and magnetoresistance of multiwalled carbon nanotube yarns (CNTYs). The CNTYs are drawn from superaligned multiwalled carbon nanotube arrays synthesized by the low-pressure chemical vapour deposition method. The zero-field resistivity shows a logarithmic decrease from 2K to 300K. In the presence of a magnetic field applied perpendicular to the yarn axis, a pronounced negative magnetoresistance is observed. A magnetoresistance ratio of 22% is obtained. These behaviours can be explained by the weak localization effect.
Keywords: 73.63.Fg      72.15.Gd      72.15.Rn     
Received: 16 April 2008      Published: 29 August 2008
PACS:  73.63.Fg (Nanotubes)  
  72.15.Gd (Galvanomagnetic and other magnetotransport effects)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03397
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHENG Lei-Mei
GAO Wei
CAO Shi-Xun
ZHANG Jin-Cang
[1] Dresselhaus M S, Dresselhaus G and Avouris P 2001 Carbon Nanotubes: Synthesis, Structure, Properties, andApplications (Heidelberg: Springer)
[2] Bachtold A, Henny M, Terrier C, Strunck C andSchonenberger C 1998 Appl. Phys. Lett. 73 274
[3] Schonenberger C, Bachtold A, Strunk C, Salvetat J Pand Forro L 1999 Appl. Phys. A 69 283
[4] Langer L, Bayot V, Grivei E, Issi J P, Heremans J P, Olk CH, Stockman L, Van Haesendonck C and Bruynseraede Y 1996 Phys.Rev. Lett. 76 479
[5] Sagnes M, Raquet B, Lassagne B, Broto J M, Flahaut E,Laurent Ch, Ondarcuhu Th, Carcenac F and Vieu Ch 2003 Chem.Phys. Lett. 372 733
[6] Song S N, Wang X K, Chang R P H and Ketterson J B 1994 Phy. Rev. Lett. 72 697
[7] Baxendale M, Mordkovich V Z and Yosimura S 1997 Phys.Rev. B 56 2161
[8] Baumgartner G, Carrard M, Zuppiroli L, Bacsa W et al 1997 Phys. Rev. B 55 6704
[9] Fang J H, Liu L W, Kong W J, Cai J Z and Lu L 2006 Chin. Phys. Lett. 23 953
[10] Jiang K L, Li Q Q and Fan S S 2002 Nature 419801
[11] Zhang M, Fang S, Zakhidov A A, Lee S B, Aliev A E,Williams C D, Atkinson K R and Baughman R H 2005 Science 309 1215
[12] Zhang X B, Jiang K L, Feng C, Liu P, Zhang L N, Kong J,Zhang T H, Li Q Q and Fan S S 2006 Adv. Mater. 18 1505
[13] Bright A A 1979 Phys. Rev. B 20 5142
[14] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[15] Bergmann G 1984 Phys. Rep. 107 1
[16] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
Related articles from Frontiers Journals
[1] HU Dong-Sheng, ZHANG Yan-Ling, YIN Xiao-Gang, ZHU Chen-Ping, ZHANG Yong-Mei. Resonant Tunneling States of a Pairing Ladder with Random Dimer Chains[J]. Chin. Phys. Lett., 2012, 29(2): 3397-3399
[2] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 3397-3399
[3] WEI Ang, LI Wei-Wei, WANG Jing-Xia, LONG Qing, WANG Zhao, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Single-Walled Carbon Nanotube Networked Field-Effect Transistors Functionalized with Thiolated Heme for NO2 Sensing[J]. Chin. Phys. Lett., 2011, 28(12): 3397-3399
[4] ZHAO Wei**, DING Jian-Wen . Reproduced Giant Localization Length of Two-Side Surface Disordered Nanowires with Long-Range Correlation[J]. Chin. Phys. Lett., 2011, 28(10): 3397-3399
[5] LIAO Bin, WU Xian-Ying, LIANG Hong, ZHANG Xu, LIU An-Dong. Preparation and Photocurrent Performance of Highly Ordered Titania Nanotube Implanted with Ag/Cu Metal Ions[J]. Chin. Phys. Lett., 2010, 27(7): 3397-3399
[6] PAN Li-Jun, CHEN Wei-Guang, ZHANG Rui-Qin, HU Xing, JIA Yu. Influence of High Atomic Hydrogenation on the Electronic Structure of Zigzag Carbon Nanotubes: A First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(7): 3397-3399
[7] PANG Fei, YIN Shu-Li, LIANG Xue-Jin, CHEN Dong-Min . Anomalous Magneto-Transport Properties of Epitaxial Single-Crystal Bi Films on Si(111)[J]. Chin. Phys. Lett., 2010, 27(10): 3397-3399
[8] LIU Hai, LIU Jin-Song, LÜ, Jian-Tao, WANG Ke-Jia. Morphology Dependence of Power Spectra for Different Polarized States from Two-Dimensional Active Random Media[J]. Chin. Phys. Lett., 2009, 26(5): 3397-3399
[9] DAI Bo, LIU Xiao-Xia, LEI Yong, Alain Nogaret. Magnetoresistance of Electrons Channelled by Microscopic Magnetic Field Modulation[J]. Chin. Phys. Lett., 2009, 26(3): 3397-3399
[10] HE Yu, ZHANG Ming, ZHANG Jin-Yu, WANG Yan, YU Zhi-Ping. Schottky Barrier Formation at a Carbon Nanotube-Scandium Junction[J]. Chin. Phys. Lett., 2009, 26(2): 3397-3399
[11] LAN Hai-Ping, ZHANG Shuang. Operation Mechanism of Double-Walled Carbon Nanotubes Transistors Investigated By ab initio Calculations[J]. Chin. Phys. Lett., 2009, 26(11): 3397-3399
[12] WANG Jing, LI Mei-Ya, LIU Xiao-Lian, PEI Ling, LIU Jun, YU Ben-Fang, ZHAO Xing-Zhong,. Synthesis and Multiferroic Properties of BiFeO3 Nanotubes[J]. Chin. Phys. Lett., 2009, 26(11): 3397-3399
[13] ZHENG Ping, CHEN Gen-Fu, LI Zheng, HU Wan-Zheng, DONG Jing, LI Gang, WANG Nan-Lin, LUO Jian-Lin. Magnetoresistance in Parent Pnictide AFe2As2(A=Sr, Ba)[J]. Chin. Phys. Lett., 2009, 26(10): 3397-3399
[14] JIANG Zhan-Feng, LI Jian, SHEN Shun-Qing, LIU Wu-Ming. Spin-Filter Effect Induced by Magnetic Edge States of Zigzag Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(4): 3397-3399
[15] GUO Zi-Zheng. Entanglement in One-Dimensional Anderson Model with Long-Range Correlated Disorder[J]. Chin. Phys. Lett., 2008, 25(3): 3397-3399
Viewed
Full text


Abstract