Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 058401    DOI: 10.1088/0256-307X/35/5/058401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Simpler Memristor Emulator Based on Varactor Diode
Dong-Sheng Yu1, Ting-Ting Sun1, Ci-Yan Zheng2, H. H. C. Iu2, T. Fernando2**
1School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116
2School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth WA 6009, Australia
Cite this article:   
Dong-Sheng Yu, Ting-Ting Sun, Ci-Yan Zheng et al  2018 Chin. Phys. Lett. 35 058401
Download: PDF(643KB)   PDF(mobile)(639KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new memristor (MR) emulator is designed by making use of only three current-feedback operational amplifiers, one varactor diode, one capacitor and five resistors. As compared with other reported MR emulators, only three active devices and ten components in total are required for realizing this MR emulator, and hence this emulator can be regarded as a simpler one for the moment. The results obtained by Multisim simulation and experimental prototypes are given to verify the practicality and feasibility of this MR emulator.
Received: 12 January 2018      Published: 30 April 2018
PACS:  84.30.-r (Electronic circuits)  
  84.30.Bv (Circuit theory)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/058401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/058401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Sheng Yu
Ting-Ting Sun
Ci-Yan Zheng
H. H. C. Iu
T. Fernando
[1]Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[2]Strukov D B, Snider G S, Stewart D R et al 2008 Nature 453 80
[3]Wu H Q, Li X Y, Wu M H et al 2014 IEEE Electron Device Lett. 35 39
[4]Wu W, Wu H Q, Gao B et al 2017 IEEE Electron Device Lett. 38 1019
[5]Yao P, Wu H Q, Gao B et al 2017 Nat. Commun. 8 15199
[6]Sheridan P M, Cai F X, Du C et al 2017 Nat. Nanotechnol. 12 784
[7]Valsa J, Biolek D and Biolek Z 2011 Int. J. Numer. Model. 24 400
[8]Muthuswamy B 2010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20 1335
[9]Fitch A L, Iu H H C, Wang X Y et al 2012 IEEE Int Symp. Circuit Syst.(ISCAS) (Seoul, South Korea) p 1139
[10]Shin S, Zheng L, Weickhardt G et al 2013 IEEE Circuits Syst. Mag. 13 2
[11]Abuelma'Atti M T and Khalifa Z J 2016 Analog Integr. Circuit Syst. Process. 86 141
[12]Alharbi A G, Fouda M E and Khalifa Z J et al 2017 IEEE Access 5 5399
[13]Sánchez-López C, Carrasco-Aguilar M A and Muñiz-Montero C 2015 Int. J. Electron. Commun. 69 1208
[14]Yu D S, Iu, H H C, Fitch A L et al 2014 IEEE Trans. Circuit Syst. I-Regular Papers 61 2888
[15]Ranjan R, Ponce P M, Hellweg W L et al 2017 J. Circuits Syst. Comput. 26 1750183
Related articles from Frontiers Journals
[1] EN Yun-Fei, ZHU Zhang-Ming, HAO Yue. An Interconnect Bus Power Optimization Method[J]. Chin. Phys. Lett., 2010, 27(7): 058401
[2] MENG Xiang-Guo, WANG Ji-Suo, ZHAI Yun, FAN Hong-Yi,. Number-Phase Quantization and Deriving Energy-Level Gap of Two LC Circuits with Mutual-Inductance[J]. Chin. Phys. Lett., 2008, 25(4): 058401
[3] JI Feng, LIU Hui, YANG Zhenghai, SHI Kangjie, HE Daren, WANG Dakai. Supercritical Characteristics of a Relaxation Oscillator[J]. Chin. Phys. Lett., 1991, 8(1): 058401
Viewed
Full text


Abstract