FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Phonon Lifetime Measurement by Stimulated Brillouin Scattering Slow Light Technique in Optical Fiber |
CHEN Wei, MENG Zhou**, ZHOU Hui-Juan |
Department of Optic Information Science and Technology, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073
|
|
Cite this article: |
CHEN Wei, MENG Zhou, ZHOU Hui-Juan 2013 Chin. Phys. Lett. 30 074209 |
|
|
Abstract Phonon lifetime is a significant parameter in the process of stimulated Brillouin scattering (SBS). In the present study, SBS slow light technique is used to measure phonon lifetime. Brillouin bandwidth is divided into natural, spontaneous and stimulated bandwidth. Compared with the traditional heterodyne-detection and pump-probe techniques, the natural Brillouin bandwidth can be obtained by SBS slow light technique, which equals the reciprocal of phonon lifetime and has no relations with the pump power. Another advantage of this technique is that the effect of polarization can be excluded. The natural Brillouin bandwidth is measured to be ~50 MHz and the phonon lifetime ~3.2 ns in the conventional single-mode fiber (SMF) at room temperature and zero strain. The obtained results are guidable in applications where the phonon lifetime information is a requisite such as phase conjugation and pulse compression.
|
|
Received: 08 March 2013
Published: 21 November 2013
|
|
PACS: |
42.65.Es
|
(Stimulated Brillouin and Rayleigh scattering)
|
|
78.35.+c
|
(Brillouin and Rayleigh scattering; other light scattering)
|
|
|
|
|
[1] Domenech-Amador N, Cusco R, Artus L, Stoica T and Calarco R 2012 Nanotechnology 23 085702 [2] Agrawal G P 2006 Nonlinear Fiber Optics (San Diego: Academic) [3] Damzen M J, M Hutchinson H R and Schroeder W A 1987 IEEE J. Quantum Electron. 23 328 [4] Hasi W, Zhong Z, Qiao Z, Guo X, Li X, Lin D, He W, Fan R and Lü Z 2012 Opt. Commun. 285 3541 [5] Marcus G, Pearl S and Pasmanik G 2008 J. Appl. Phys. 103 103105 [6] Yoshida H, Hatae T, Fujita H, Nakatsuka M and Kitamura S 2009 Opt. Express 17 13654 [7] Beugnot J C, Stiller B, Foaleng Mafang S, Lee M W, Delque M, Kudlinski A, Maillotte H, Laude V, Thevenaz L and Sylvestre T 2010 Proc. ECOC 2010 Tu.4.D.5 [8] Thévenaz L and Beugnot J C 2009 Proc. OFS20 75036A [9] Schroeder J, Hwa L G, Shyong M C, Floudas G A, Thompson D A and Drexhage M G 1987 Electron. Lett. 23 1128 [10] Nikles M, Thevenaz L and Robert P A 1997 J. Lightwave Technol. 15 1842 [11] Rowell N L, Thomas P J, van Driel H M and Stegeman G I 1979 Appl. Phys. Lett. 34 139 [12] Tkach R W, Chraplyvy A R and Derosier R M 1986 Electron. Lett. 22 1011 [13] Yeniay A, Delavaux J and Toulouse J 2002 J. Lightwave Technol. 20 1425 [14] Shibata N, Waarts R G and Braun R P 1987 Opt. Lett. 12 269 [15] Villafranca A, L ázaro J A, Salinas í and Garcés I 2005 Opt. Express 13 7336 [16] Gaeta A L and Boyd R W 1991 Phys. Rev. A 44 3205 [17] Song K Y, Herráez M G and Thévenaz L 2005 Opt. Express 13 82 [18] Okawachi Y, Bigelow M S, Sharping J E, Zhu Z, Schweinsberg A, Gauthier D J, Boyd R W and Gaeta A L 2005 Phys. Rev. Lett. 94 153902 [19] Thévenaz L 2008 Nat. Photon. 2 474 [20] Zadok A, Eyal A and Tur M 2011 Appl. Opt. 50 E38 [21] Lee M, Zhu Y, Gauthier D J, Gehm M E and Neifeld M A 2011 Appl. Opt. 50 6063 [22] Dong Y, Lu Z, Li Q and Liu Y 2008 J. Opt. Soc. Am. B 25 C109 [23] Ghosh A, Venkitesh D and Vijaya R 2009 Appl. Opt. 48 G48 [24] Zhu Y, Cabrera-Granado E, Calderon O G, Melle S, Okawachi Y, Gaeta A L and Gauthier D J 2010 J. Opt. 12 104019 [25] Chen W and Meng Z 2011 Chin. J. Lasers 38 0305002 (in Chinese) [26] Chen W and Meng Z 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165402 [27] Chen W, Meng Z, Zhou H and Luo H 2012 Chin. Phys. B 21 034212 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|