FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Modeling 2D Gyromagnetic Photonic Crystals by Modified FDTD Method |
LI Qing-Bo1,2, WU Rui-Xin1**, YANG Yan1, SUN Hui-Ling2 |
1Department of Electronic Sciences and Engineering, Nanjing University, Nanjing 210093 2School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai'an 223300
|
|
Cite this article: |
LI Qing-Bo, WU Rui-Xin, YANG Yan et al 2013 Chin. Phys. Lett. 30 074208 |
|
|
Abstract The band structures of two-dimensional (2D) gyromagnetic photonic crystals (PCs) are analyzed by a modified finite difference time domain (FDTD) method. A special implementation is used to tackle the magnetic constitution equation. This method avoids the discretizing complexity in the time domain caused by nonlinear frequency dependence of anisotropy permeability tensor, and therefore keeps the fully explicit nature of the original FDTD method. Our implementation is proved by the band structure calculations using other methods and the transmission measurements of 2D gyromagnetic PC involving circular ferrite rods and square rods.
|
|
Received: 15 March 2013
Published: 21 November 2013
|
|
PACS: |
42.70.Qs
|
(Photonic bandgap materials)
|
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
|
|
|
[1] Figotin A, Vitebskiy I 2003 Phys. Rev. B 67 165210 [2] Pozar D M 2005 Microwave Engineering 3rd edn (New York: Wiley) [3] Levy M and Li R 2006 Appl. Phys. Lett. 89 121113 [4] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904 [5] Hartstein A, Burstein E, Maradudin A A, Brewer R and Wallis R F 1973 J. Phys. C: Solid State Phys. 6 1266 [6] Wang Z, Chong Y D, Joannopoulos J D and Soljacic M 2009 Nature 461 772 [7] Poo Y, Wu R X, Lin Z F, Yang Y and Chan C T 2011 Phys. Rev. Lett. 106 093903 [8] Yu Z F, Veronis G, Wang Z and Fan S H 2008 Phys. Rev. Lett. 100 023902 [9] Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F and Chui S T 2012 Appl. Phys. Lett. 101 081912 [10] Volakis J L, Mumcu G, Sertel K, Chen C C, Lee M, Kramer B, Psychoudakis D and Kiziltas G 2006 IEEE Antennas Propag. Mag. 48 12 [11] Liu S, Lu W, Lin Z and Chui S T 2010 Appl. Phys. Lett. 97 201113 [12] Qiu W, Wang Z and Soljacic M 2011 Opt. Express 19 22248 [13] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505 [14] Khitun A, Bao M and Wang K L 2010 J. Phys. D 43 264005 [15] Liu S Y, Du J, Lin Z, Wu R X and Chui S T 2008 Phys. Rev. B 78 155101 [16] Liu S Y, Chen W, Du J, Lin Z, Chui S T and Chan C T 2008 Phys. Rev. Lett. 101 157407 [17] Lin Z F and Chui S T 2004 Phys. Rev. E 69 056614 [18] Kruger H, Spachmann H and Weiland T 2001 IEEE Trans. Magn. 37 3269 [19] Gwarek W K and Moryc A 2004 IEEE Microwave Wireless Compon. Lett. 14 331 [20] Pereda J A, Vielva L A, Vegas A and Prieto A 1993 IEEE Microwave Guided Wave Lett. 3 136 [21] Okoniewsk M and Okoniewska E 1994 IEEE Microwave Guided Wave Lett. 4 169 [22] Pereda J A, Vielva A, Vegas A and Prieto A 1995 IEEE Trans. Magn. 31 1666 [23] Singh G, Tan E L and Chen Z N 2012 Opt. Lett. 37 326 [24] Xu J, Wu R X, Chen P and Shi Y 2007 J. Phys. D: Appl. Phys. 40 960 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|