Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 077501    DOI: 10.1088/0256-307X/39/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Resistance Anomaly and Linear Magnetoresistance in Thin Flakes of Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$
Honglei Feng1,2, Yong Li1,2, Youguo Shi1,2,3, Hong-Yi Xie4, Yongqing Li1,2,3, and Yang Xu1,2*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
Honglei Feng, Yong Li, Youguo Shi et al  2022 Chin. Phys. Lett. 39 077501
Download: PDF(1679KB)   PDF(mobile)(1814KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Research interests in recent years have expanded into quantum materials that display novel magnetism incorporating strong correlations, topological effects, and dimensional crossovers. Fe$_{3}$GeTe$_{2}$ represents such a two-dimensional van der Waals platform exhibiting itinerant ferromagnetism with many intriguing properties. Up to date, most electronic transport studies on Fe$_{3}$GeTe$_{2}$ have been limited to its anomalous Hall responses while the longitudinal counterpart (such as magnetoresistance) remains largely unexplored. Here, we report a few unusual transport behaviors on thin flakes of Fe$_{3}$GeTe$_{2}$. Upon cooling to the base temperature, the sample develops a resistivity upturn that shows a crossover from a marginally $-\ln T$ to a ${-}{T}^{1/2}$ dependence, followed by a lower-temperature deviation. Moreover, we observe a negative and non-saturating linear magnetoresistance when the magnetization is parallel or antiparallel to the external magnetic field. The slope of the linear magnetoresistance also shows a nonmonotonic temperature dependence. We deduce an anomalous contribution to the magnetoresistance at low temperatures with a scaling function proportional ${-HT}^{1/2}$, as well as a temperature-independent linear term. Possible mechanisms that could account for our observations are discussed.
Received: 29 March 2022      Express Letter Published: 01 June 2022
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/077501       OR      http://cpl.iphy.ac.cn/Y2022/V39/I7/077501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Honglei Feng
Yong Li
Youguo Shi
Hong-Yi Xie
Yongqing Li
and Yang Xu
[1] Gong C and Zhang X 2019 Science 363 eaav4450
[2] Mak K F, Shan J, and Ralph D C 2019 Nat. Rev. Phys. 1 646
[3] Gibertini M, Koperski M, Morpurgo A F, and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[4] Fisher M E 1974 Rev. Mod. Phys. 46 597
[5] Jiang S, Li L, Wang Z, Mak K F, and Shan J 2018 Nat. Nanotechnol. 13 549
[6] Jiang S, Shan J, and Mak K F 2018 Nat. Mater. 17 406
[7] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544
[8] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94
[9] Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, and Zhang Z 2018 Nat. Nanotechnol. 13 554
[10] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, and Xu X 2018 Nat. Mater. 17 778
[11] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Il Min B, Yang B J, and Kim J S 2018 Nat. Mater. 17 794
[12] Liu Y, Stavitski E, Attenkofer K, and Petrovic C 2018 Phys. Rev. B 97 165415
[13] Wang Y, Xian C, Wang J, Liu B, Ling L, Zhang L, Cao L, Qu Z, and Xiong Y 2017 Phys. Rev. B 96 134428
[14] Lin X and Ni J 2019 Phys. Rev. B 100 085403
[15]Deiseroth H J, Aleksandrov K, and Reiner C 2006 Eur. J. Inorg. Chem. 2006 1561
[16] May A F, Calder S, Cantoni C, Cao H, and McGuire M A 2016 Phys. Rev. B 93 014411
[17] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, and Morpurgo A F 2018 Nano Lett. 18 4303
[18]Zhu W, Lin H, Yan F, Hu C, Wang Z, Zhao L, Deng Y, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žtić I, Li S, Zheng H, and Wang K 2021 Adv. Mater. 33 2104658
[19] Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K, and Wang K 2020 Sci. Bull. 65 1072
[20] Zhuang H L, Kent P R C, and Hennig R G 2016 Phys. Rev. B 93 134407
[21] Zhang Y, Lu H Y, Zhu X G, Tan S Y, Feng W, Liu Q, Zhang W, Chen Q Y, Liu Y, Luo X B, Xie D H, Luo L Z, Zhang Z J, and Lai X C 2018 Sci. Adv. 4 eaao6791
[22] Xu X, Li Y W, Duan S R, Zhang S L, Chen Y J, Kang L, Liang A J, Chen C, Xia W, Xu Y, Malinowski P, Xu X D, Chu J H, Li G, Guo Y F, Liu Z K, Yang L X, and Chen Y L 2020 Phys. Rev. B 101 201104
[23] Bao S, Wang W, Shangguan Y, Cai Z, Dong Z Y, Huang Z, Si W, Ma Z, Kajimoto R, Ikeuchi K, Yano S I, Yu S L, Wan X, Li J X, and Wen J 2022 Phys. Rev. X 12 011022
[24] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D, and Thompson J D 2016 Phys. Rev. B 93 144404
[25] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[26] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614
[27] Verchenko V Y, Tsirlin A A, Sobolev A V, Presniakov I A, and Shevelkov A V 2015 Inorg. Chem. 54 8598
[28] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L, and Lee C 2018 Nat. Commun. 9 1554
[29] Edwards D M, Wohlfarth E P, and Jones H 1968 Proc. R. Soc. London Ser. A 303 127
[30] Bergmann G 1984 Phys. Rep. 107 1
[31] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[32] Kondo J 1964 Prog. Theor. Phys. 32 37
[33] Zawadowski A 1980 Phys. Rev. Lett. 45 211
[34] Rapp Ö, Bhagat S M, and Gudmundsson H 1982 Solid State Commun. 42 741
[35] Yang S, Li Z, Lin C, Yi C, Shi Y, Culcer D, and Li Y 2019 Phys. Rev. Lett. 123 096601
[36]Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[37] Cox D L and Zawadowski A 1998 Adv. Phys. 47 599
[38] Zhao M, Chen B B, Xi Y, Zhao Y, Xu H, Zhang H, Cheng N, Feng H, Zhuang J, Pan F, Xu X, Hao W, Li W, Zhou S, Dou S X, and Du Y 2021 Nano Lett. 21 6117
[39] von Delft J, Ralph D C, Buhrman R A, Upadhyay S K, Louie R N, Ludwig A W W, and Ambegaokar V 1998 Ann. Phys. 263 1
[40] Zaránd G 2005 Phys. Rev. B 72 245103
[41] Ralph D C, Ludwig A W W, von Delft J, and Buhrman R A 1994 Phys. Rev. Lett. 72 1064
[42] Cichorek T, Sanchez A, Gegenwart P, Weickert F, Wojakowski A, Henkie Z, Auffermann G, Paschen S, Kniep R, and Steglich F 2005 Phys. Rev. Lett. 94 236603
[43]Kirchner S 2020 2020 Adv. Quantum Technol. 3 1900128
[44] Zhu L J, Nie S H, Xiong P, Schlottmann P, and Zhao J H 2016 Nat. Commun. 7 10817
[45] Cichorek T, Bochenek L, Schmidt M, Czulucki A, Auffermann G, Kniep R, Niewa R, Steglich F, and Kirchner S 2016 Phys. Rev. Lett. 117 106601
[46] Affleck I, Ludwig A W W, Pang H B, and Cox D L 1992 Phys. Rev. B 45 7918
[47] McGuire T and Potter R 1975 IEEE Trans. Magn. 11 1018
[48] Checkelsky J G, Lee M, Morosan E, Cava R J, and Ong N P 2008 Phys. Rev. B 77 014433
[49] Gil W, Görlitz D, Horisberger M, and Kötzler J 2005 Phys. Rev. B 72 134401
[50] Raquet B, Viret M, Sondergard E, Cespedes O, and Mamy R 2002 Phys. Rev. B 66 024433
[51] Boye S A, Lazor P, and Ahuja R 2005 J. Appl. Phys. 97 083902
[52] Xiao D, Shi J, and Niu Q 2005 Phys. Rev. Lett. 95 137204
[53] Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959
[54] Kasuya T 1956 Prog. Theor. Phys. 16 58
[55] Wang Y, Lee P A, Silevitch D M, Gomez F, Cooper S E, Ren Y, Yan J Q, Mandrus D, Rosenbaum T F, and Feng Y 2020 Nat. Commun. 11 216
[56] Smit J 1951 Physica 17 612
[57] Potok R M, Rau I G, Shtrikman H, Oreg Y, and Goldhaber-Gordon D 2007 Nature 446 167
[58] Yeh S S and Lin J J 2009 Phys. Rev. B 79 012411
[59] Béri B and Cooper N R 2012 Phys. Rev. Lett. 109 156803
Related articles from Frontiers Journals
[1] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 077501
[2] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 077501
[3] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 077501
[4] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 077501
[5] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 077501
[6] Sheng Xu, Liqin Zhou, Xiao-Yan Wang, Huan Wang, Jun-Fa Lin, Xiang-Yu Zeng, Peng Cheng, Hongming Weng, and Tian-Long Xia. Quantum Oscillations and Electronic Structure in the Large-Chern-Number Topological Chiral Semimetal PtGa[J]. Chin. Phys. Lett., 2020, 37(10): 077501
[7] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 077501
[8] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 077501
[9] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 077501
[10] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077501
[11] Qi Wang, Qianheng Du, Cedomir Petrovic, Hechang Lei. Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal[J]. Chin. Phys. Lett., 2020, 37(2): 077501
[12] Xin-Min Wang, Ling-Xiao Zhao, Jing Li, Mo-Ran Gao, Wen-Liang Zhu, Chao-Yang Ma, Yi-Yan Wang, Shuai Zhang, Zhi-An Ren, Gen-Fu Chen. Negative Longitudinal Magnetoresistance in the $c$-Axis Resistivity of Cd[J]. Chin. Phys. Lett., 2019, 36(5): 077501
[13] Moran Gao, Junbao He, Wenliang Zhu, Shuai Zhang, Xinmin Wang, Jing Li, Chaoyang Ma, Hui Liang, Zhian Ren, Genfu Chen. Magnetotransport Properties of a Nodal Line Semimetal TiSi[J]. Chin. Phys. Lett., 2018, 35(11): 077501
[14] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 077501
[15] Zheng-Wei Xie, Ling Li. Spin-Polarization in Quasi-Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2017, 34(5): 077501
Viewed
Full text


Abstract