Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 077501    DOI: 10.1088/0256-307X/38/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates
Chenqiang Hua1, Hua Bai1, Yi Zheng1, Zhu-An Xu1, Shengyuan A. Yang2, Yunhao Lu1*, and Su-Huai Wei3
1Zhejiang Province Key Laboratory of Quantum Technology and Device, State Key Laboratory of Silicon Materials, Department of Physics, Zhejiang University, Hangzhou 310027, China
2Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
3Beijing Computational Science Research Center, Beijing 100193, China
Cite this article:   
Chenqiang Hua, Hua Bai, Yi Zheng et al  2021 Chin. Phys. Lett. 38 077501
Download: PDF(2464KB)   PDF(mobile)(3524KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The coupling between electric ordering and magnetic ordering in two-dimensional (2D) materials is important for both fundamental research of 2D multiferroics and future development of magnetism-based information storage and operation. Here, we introduce a scheme for realizing a magnetic phase transition through the transition of electric ordering. We take CuMoP$_{2}$S$_{6}$ monolayer as an example, which is a member of the large 2D transition-metal chalcogen-phosphates family. Based on first-principles calculations, we find that it is a multiferroic with unprecedented characters, namely, it exhibits two different phases: an antiferroelectric-antiferromagnetic phase and a ferroelectric-ferromagnetic phase, in which the electric and magnetic orderings are strongly coupled. Importantly, the electric polarization is out-of-plane, so the magnetism can be readily switched by using the gate electric field. Our finding reveals a series of 2D multiferroics with special magnetoelectric coupling, which hold great promise for experimental realization and practical applications.
Received: 06 May 2021      Published: 18 June 2021
PACS:  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  64.70.Tg (Quantum phase transitions)  
  77.80.B- (Phase transitions and Curie point)  
  63.20.dk (First-principles theory)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2019YFE0112000), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR21A040001), and the National Natural Science Foundation of China (Grant No. 11974307, 12088101, 11991060, and U1930402).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/077501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I7/077501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chenqiang Hua
Hua Bai
Yi Zheng
Zhu-An Xu
Shengyuan A. Yang
Yunhao Lu
and Su-Huai Wei
[1] Fiebig M, Lottermoser T, Meier D, and Trassin M 2016 Nat. Rev. Mater. 1 16046
[2] Zhao W, Fu Z, Deng J, Li S, Han Y, Li M R, Wang X, and Hong J 2021 Chin. Phys. Lett. 38 037701
[3] Khomskii D 2009 Physics 2 20
[4] Dong S, Xiang H, and Dagotto E 2019 Natl. Sci. Rev. 6 629
[5] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, and Zhu W 2017 Nat. Commun. 8 14956
[6] Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S A, Lu Y, and Ji W 2018 Mater. Horiz. 5 521
[7] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[8] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[9] Xiao C, Wang F, Yang S A, Lu Y, Feng Y, and Zhang S 2018 Adv. Funct. Mater. 28 1707383
[10] Huang C, Du Y, Wu H, Xiang H, Deng K, and Kan E 2018 Phys. Rev. Lett. 120 147601
[11] Luo W, Xu K, and Xiang H 2017 Phys. Rev. B 96 235415
[12] Liu X, Pyatakov A P, and Ren W 2020 Phys. Rev. Lett. 125 247601
[13] Gong C, Kim E M, Wang Y, Lee G, and Zhang X 2019 Nat. Commun. 10 2657
[14] Li L and Wu M 2017 ACS Nano 11 6382
[15] Xu C, Chen P, Tan H, Yang Y, Xiang H, and Bellaiche L 2020 Phys. Rev. Lett. 125 37203
[16] Qi J, Wang H, Chen X, and Qian X 2018 Appl. Phys. Lett. 113 043102
[17] Zhang J J, Lin L, Zhang Y, Wu M, Yakobson B I, and Dong S 2018 J. Am. Chem. Soc. 140 9768
[18] Zhang J, Shen X, Wang Y, Ji C, Zhou Y, Wang J, Huang F, and Lu X 2020 Phys. Rev. Lett. 125 017601
[19] Weng Y, Lin L, Dagotto E, and Dong S 2016 Phys. Rev. Lett. 117 037601
[20] Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E, and Wang Y 2020 Phys. Rev. Lett. 124 067602
[21] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, and Liu Z 2016 Nat. Commun. 7 12357
[22] Susner M A, Chyasnavichyus M, McGuire M A, Ganesh P, and Maksymovych P 2017 Adv. Mater. 29 1602852
[23] Burr G, Durand E, Evain M, and Brec R 1993 J. Solid State Chem. 103 514
[24] Bourdon X, Maisonneuve V, Cajipe V B, Payen C, and Fischer J E 1999 J. Alloys Compd. 283 122
[25] Song W, Fei R, and Yang L 2017 Phys. Rev. B 96 235420
[26] Maisonneuve V, Cajipe V, Simon A, Von Der M R, and Ravez J 1997 Phys. Rev. B 56 10860
[27] Lai Y, Song Z, Wan Y, Xue M, Wang C, Ye Y, Dai L, Zhang Z, Yang W, Du H, and Yang J 2019 Nanoscale 11 5163
[28] Wei S H, Zhang S B, and Zunger A 1993 Phys. Rev. Lett. 70 1639
[29] Sun Z Z, Xun W, Jiang L, Zhong J L, and Wu Y Z 2019 J. Phys. D 52 465302
[30] Yang J C, He Q, Yu P, and Chu Y H 2015 Annu. Rev. Mater. Res. 45 249
[31] Anderson P W 1950 Phys. Rev. 79 350
[32] Goodenough J B 1955 Phys. Rev. 100 564
[33] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[34] Seyler K L, Zhong D, Klein D R, Gao S, Zhang X, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2018 Nat. Phys. 14 277
[35] Sheppard D, Xiao P, Chemelewski W, Johnson D D, and Henkelman G 2012 J. Chem. Phys. 136 074103
[36] Cohen R E 1992 Nature 358 136
[37] Yin H M, Zhou H W, and Huang Y N 2019 Chin. Phys. Lett. 36 070501
Viewed
Full text


Abstract