Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 045204    DOI: 10.1088/0256-307X/38/4/045204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas
Tong Liu , Lai Wei , Feng Wang*, and Zheng-Xiong Wang 
Key Laboratory of materials Modification by Beams of the Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
Cite this article:   
Tong Liu , Lai Wei , Feng Wang et al  2021 Chin. Phys. Lett. 38 045204
Download: PDF(600KB)   PDF(mobile)(589KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically investigate the Coriolis force effect on the suppression of an explosive burst, triggered by the neo-classical tearing mode, in reversed magnetic shear configuration tokamak plasmas, using a reduced magnetohydrodynamic model, including bootstrap current. Previous works have shown that applying differential poloidal rotation, with rotation shear located near the outer rational surface, is an effective way to suppress an explosive burst. In comparison with cases where there is no Coriolis force, the amplitude of differential poloidal rotation required to effectively suppress the explosive burst is clearly reduced once the effect of Coriolis force is taken into consideration. Moreover, the effective radial region of the rotation shear location is broadened in cases where the Coriolis force effect is present. Applying rotation with shear located between the radial positions of $q_{\rm min}$ and the outer rational surface always serves to effectively suppress explosive bursts, which we anticipate will reduce operational difficulties in controlling explosive bursts, and will consequently prevent plasma disruption in tokamak experiments.
Received: 14 November 2020      Published: 06 April 2021
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.55.Tn (Ideal and resistive MHD modes; kinetic modes)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11925501, 11875099, and 11575158), the Liaoning Revitalization Talents Program (Grant No. XLYC1802009), and the China Scholarship Council (Grant No. 201806060036).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/045204       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/045204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tong Liu 
Lai Wei 
Feng Wang
and Zheng-Xiong Wang 
[1] Carrera R, Hazeltine R D and Kotschenreuther M 1986 Phys. Fluids 29 899
[2] Hegna C C and Callen J D 1992 Phys. Fluids B: Plasma Phys. 4 1855
[3] Cai H 2016 Nucl. Fusion 56 126016
[4] Wei L, Wang Z X, Wang J and Yang X 2016 Nucl. Fusion 56 106015
[5] Wang H, Wang Z, Ding Y and Rao B 2015 Plasma Sci. Technol. 17 539
[6] Wang H H, Sun Y W, Shi T H, Zang Q, Liu Y Q, Yang X, Gu S, He K Y, Gu X, Qian J P, Shen B, Luo Z P, Chu N, Jia M N, Sheng Z C, Liu H Q, Gong X Z, and B N W 2018 Nucl. Fusion 58 056024
[7] Fujita T, Ide S, Kamada Y, Suzuki T, Oikawa T, Takeji S, Sakamoto Y, Koide Y, Isayama A, Hatae T, Kubo H, Higashijima S, Naito O, Shirai H and Fukuda T 2001 Phys. Rev. Lett. 87 085001
[8] Crisanti F, Litaudon X, Mailloux J, Mazon D, Barbato E, Baranov Y, Bécoulet A, Bécoulet M, Challis C D, Conway G D, Dux R, Eriksson L G, Esposito B, Frigione D, Hennequin P, Giroud C, Hawkes N, Huysmans G, Imbeaux F, Joffrin E, Lomas P, Lotte P, Maget P, Mantsinen M, Moreau D, Rimini F, Riva M, Sarazin Y, Tresset G, Tuccillo A A and Zastrow K D 2002 Phys. Rev. Lett. 88 145004
[9] Litaudon X, coulet A B, Crisanti F, Wolf R, Baranov Y, Barbato E, coulet M B, Budny R, Castaldo C, Cesario R, Challis C, Conway G, Baar M D, Vries P D, Dux R, Eriksson L, Esposito B, Felton R, Fourment C, Frigione D, Garbet X, Giannella R, Giroud C, Gorini G, Hawkes N, Hellsten T, Hender T, Hennequin P, Hogeweij G, Huysmans G, Imbeaux F, Joffrin E, Lomas P, Lotte P, Maget P, Mailloux J, Mantica P, Mantsinen M, Mazon D, Moreau D, Parail V, Pericoli V, Rachlew E, Riva M, Rimini F, Sarazin Y, Stratton B, Tala T, Tresset G, Tudisco O, Zabeo L, Zastrow K D and contributors J E 2003 Nucl. Fusion 43 565
[10] Greenfield C M, Murakami M, Ferron J R, Wade M R, Luce T C, Petty C C, Menard J E, Petrie T W, Allen S L, Burrell K H, Casper T A, DeBoo J C, Doyle E J, Garofalo A M, Gorelov I A, Groebner R J, Hobirk J, Hyatt A W, Jayakumar R J, Kessel C E, Haye R J L, Jackson G L, Lao L L, Lohr J, Makowski M A, Pinsker R I, Politzer P A, Prater R, Staebler G M, Strait E J, Taylor T S, West W P and Team T D D 2004 Plasma Phys. Control. Fusion 46 B213
[11] Pritchett P L, Lee Y C and Drake J F 1980 Phys. Fluids 23 1368
[12] Wang Z X, Wang X G, Dong J Q, Lei Y A, Long Y X, Mou Z Z and Qu W X 2007 Phys. Rev. Lett. 99 185004
[13] Liu T, Yang J F, Hao G Z, Liu Y Q, Wang Z X, Zheng S, Wang A K and He H D 2017 Plasma Phys. Control. Fusion 59 065009
[14] Wang X Q and Wang X G 2015 Plasma Phys. Control. Fusion 57 025019
[15] Wang X Q and Wang X G 2017 Nucl. Fusion 57 016039
[16] Chang Z, Park W, Fredrickson E D, Batha S H, Bell M G, Bell R, Budny R V, Bush C E, Janos A, Levinton F M, McGuire K M, Park H, Sabbagh S A, Schmidt G L, Scott S D, Synakowski E J, Takahashi H, Taylor G and Zarnstorff M C 1996 Phys. Rev. Lett. 77 3553
[17] de Baar M R, Hogeweij G M D, Lopes C N J, Oomens A A M and Schüller F C 1997 Phys. Rev. Lett. 78 4573
[18] Günter S, Schade S, Maraschek M, Pinches S, Strumberger E, Wolf R, Yu Q and Team A U 2000 Nucl. Fusion 40 1541
[19] Takeji S, Tokuda S, Fujita T, Suzuki T, Isayama A, Ide S, Ishii Y, Kamada Y, Koide Y, Matsumoto T, Oikawa T, Ozeki T and Y S 2002 Nucl. Fusion 42 5
[20] Maget P, Huysmans G T A, Garbet X, Ottaviani M, Lütjens H and Luciani J F 2007 Phys. Plasmas 14 052509
[21] Liu T, Wang Z X, Wang J and Wei L 2018 Nucl. Fusion 58 076026
[22] Zhang W, Ma Z, Lu X and Zhang H 2020 Nucl. Fusion 60 126022
[23] Tang W, Wang Z X, Wei L, Wang J and Lu S 2020 Nucl. Fusion 60 026015
[24] Yang S M, Park J K, Na Y S, Wang Z R, Ko W H, In Y, Lee J H, Lee K D and Kim S K 2019 Phys. Rev. Lett. 123 095001
[25] Wang Z, Logan N, Munaretto S, Liu Y, Sun Y, Gu S, Park J K, Hanson J, Hu Q, Strait T, Nazikian R, Kolemen E and Menard J 2019 Nucl. Fusion 59 024001
[26] Zhang W, Ma Z W and Wang S 2017 Phys. Plasmas 24 102510
[27] Ishii Y, Azumi M, Kurita G and Tuda T 2000 Phys. Plasmas 7 4477
[28] Ishii Y, Azumi M and Kishimoto Y 2002 Phys. Rev. Lett. 89 205002
[29] Wang Z X, Wei L and Yu F 2015 Nucl. Fusion 55 043005
[30] Wang J, Wang Z X, Wei L and Liu Y 2017 Nucl. Fusion 57 046007
[31] Wang S and Ma Z W 2015 Phys. Plasmas 22 122504
[32] Ren Z, Liu J, Wang F, Cai H, Wang Z and Shen W 2020 Plasma Sci. Technol. 22 065102
[33] Wei L and Wang Z X 2014 Nucl. Fusion 54 043015
[34] Liu T, Wang J, Wei L and Wang Z X 2020 Nucl. Fusion 60 106009
[35] Yu Q, Günter S, Lackner K, Gude A and Maraschek M 2000 Nucl. Fusion 40 2031
[36] Sato M and Wakatani M 2005 Nucl. Fusion 45 143
Viewed
Full text


Abstract