Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 046201    DOI: 10.1088/0256-307X/38/4/046201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning
Zhenjiang Han1, Han Liu1, Quan Li1, Dan Zhou1,2*, and Jian Lv1*
1International Center for Computational Physics Method and Software, State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
2School of Science, Changchun University of Science and Technology, Changchun 130022, China
Cite this article:   
Zhenjiang Han, Han Liu, Quan Li et al  2021 Chin. Phys. Lett. 38 046201
Download: PDF(1568KB)   PDF(mobile)(1551KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Gallium arsenide (GaAs), a typical covalent semiconductor, is widely used in the electronic industry, owing to its superior electron transport properties. However, its brittle nature is a drawback that has so far significantly limited its application. An exploration of the structural deformation modes of GaAs under large strain at the atomic level, and the formulation of strategies to enhance its mechanical properties is highly desirable. The stress-strain relations and deformation modes of single-crystal and nanotwinned GaAs under various loading conditions are systematically investigated, using first-principles calculations. Our results show that the ideal strengths of nanotwinned GaAs are 14% and 15% higher than that of single-crystal GaAs under pure and indentation shear strains, respectively, without producing a significantly negative effect in terms of its electronic performance. The enhancement in strength stems from the rearrangement of directional covalent bonds at the twin boundary. Our results offer a fundamental understanding of the mechanical properties of single crystal GaAs, and provide insights into the strengthening mechanism of nanotwinned GaAs, which could prove highly beneficial in terms of developing reliable electronic devices.
Received: 11 January 2021      Published: 06 April 2021
PACS:  62.20.-x (Mechanical properties of solids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703400), the National Natural Science Foundation of China (Grant Nos. 11704044 and 11974134), the Jilin Province Outstanding Young Talents Project (Grant No. 20190103040JH), and the China Postdoctoral Science Foundation (Grant No. 2018M631870).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/046201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/046201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenjiang Han
Han Liu
Quan Li
Dan Zhou
and Jian Lv
[1]Masataka H, Kohei S, Hisashi M, Yoshinao K, Akinori K, Akito K, Takekazu M and Shigenobu Y 2016 Sci. Technol. 31 034001
[2] Jose M, Philippe G, Xavier P, Amador P T and Jose R 2014 IEEE Trans. Power Electron. 29 2155
[3] Rahul K, Mukhopadhyay P, Bag A, Jana S K, Chakraborty A, Das S, Mahata M K and Biswas D 2015 Appl. Surf. Sci. 324 304
[4] Zhao X Y, Huang J H, Zhuo Z Y, Xue Y Z, Ding K, Dou X M, Liu J and Sun B Q 2020 Chin. Phys. Lett. 37 044204
[5] Gao L, Liu Q L, Yang J W, Wu Y, Liu Z H, Qin S J, Ye X B, Jin S F, Li G D, Zhao H Z and Long Y W 2020 Chin. Phys. Lett. 37 066202
[6] Zhou J J and Marco B 2016 Phys. Rev. B 94 201201
[7] Zhang B W, Nie Z G, Wang B, Wang D K, Tang J L, Wang X H, Zhang J H, Xing G H, Zhang W C and Wei Z P 2020 Phys. Chem. Chem. Phys. 22 25819
[8] Zhang S H, Xu W, Badalyan S M and Peeters F M 2013 Phys. Rev. B 87 075443
[9] Takayuki S, Ryuichi M and Tohru O 2013 Phys. Rev. Lett. 111 057005
[10] Frank D, Matthias G, Paul B, Ulrich F, Christian K, Thomas N D T, Eduard O, Gerald S, Michael S, Alexander W, AndreasW B, Rainer K, Matteo P, Nicolas B, Charlotte D, Eric G, Bruno G, Thierry S, Aurélie T, Thomas S, Anja D, Thomas H and Klaus S 2014 Prog. Photovoltaics 22 277
[11] Josef A C, David A T and Ray R L 2009 Nano Lett. 9 148
[12] Jongseung Y, Sungjin J, Chun I S, Inhwa J, Hoon-Sik K, Matthew M, Etienne M, Li X L, James J C, Ungyu P and John A R 2010 Nature 465 329
[13] Sandroff C J, Hegde M S, Farrow L A, Bhat R J P and Chang C C 1990 J. Appl. Phys. 67 586
[14] Muhammad U, Christopher A B, Andrew L and Eoin P O R 2011 Phys. Rev. B 84 245202
[15] Grillo S E, Ducarroir M, Nadal M, Tournie E and Faurie J P 2003 J. Phys. D 36 L5
[16] Lee J, Wu J, Shi M X, Jongseung Y, Sang-Il P, Li M, Liu Z J, Huang Y G and Rogers J A 2011 Adv. Mater. 23 986
[17] Laister D and Jenkins G M 1973 J. Mater. Sci. 8 1218
[18] Wang J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Han F, Yu K P and Ma H A 2019 Chin. Phys. Lett. 36 046101
[19] Lu K, Lu L and Suresh S 2009 Science 324 349
[20] Wang Z C, Mitsuhiro S, Keith P M, Gu L, Susumu T, Alexander L S and Yuichi I 2011 Nature 479 380
[21] Gao B, Gao P Y, Lu S H, Lv J, Wang Y C and Ma Y 2019 Sci. Bull. 64 301
[22] Lu L, Shen Y F, Chen X H, Qian L H and Lu K 2004 Science 304 422
[23] Madhav R K, Guo J J, Shinoda Y, Fujita T, Hirata A, Singh J P, McCauley J W and Chen M W 2012 Nat. Commun. 3 1052
[24] An Q, Goddard W A, Xie K Y, Sim G D, Hemker K J, Munhollon T, Toksoy M F and Haber R A 2016 Nano Lett. 16 7573
[25] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
[26] Liu X Y, Zhang H and Cheng X L 2018 Chin. Phys. Lett. 35 116201
[27] Lu L, Chen X, Huang X and Lu K 2009 Science 323 607
[28] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y and Tian Y J 2014 Nature 510 250
[29] Li B, Sun H and Chen C 2014 Nat. Commun. 5 4965
[30] Li G D, Sergey I M, Zhang Q J, An Q, Zhai P C and G J S 2017 Phys. Rev. Lett. 119 215503
[31] Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] John P P, Kieron B and Matthias E 1996 Phys. Rev. Lett. 77 3865
[34] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[35] Zhang Y, Sun H and Chen C 2004 Phys. Rev. Lett. 93 195504
[36] Pan Z, Sun H and Chen C 2009 Phys. Rev. B 79 104102
[37] Pan Z, Sun H, Zhang Y and Chen C 2009 Phys. Rev. Lett. 102 055503
[38] Pan Z, Sun H and Chen C 2007 Phys. Rev. Lett. 98 135505
[39] Qu N R, Wang H C, Li Q, Li Z P and Gao F M 2019 Chin. Phys. Lett. 36 036201
[40] Liu C, Zhai H, Sun Y, Gong W, Yan Y, Li Q and Zheng W 2018 Phys. Chem. Chem. Phys. 20 5952
[41] Li H, Hao Y, Sun D, Zhou D, Liu G, Wang H and Li Q 2019 Phys. Chem. Chem. Phys. 21 25859
[42] Gong W, Liu C, Song X, Li Q, Ma Y and Chen C 2019 Phys. Rev. B 100 220102(R)
[43] Liu C, Song X, Li Q, Ma Y and Chen C 2019 Phys. Rev. Lett. 123 195504
[44] Li Q, Zhou D, Zheng W, Ma Y and Chen C 2015 Phys. Rev. Lett. 115 185502
[45] Liu C, Song X, Li Q, Ma Y and Chen C 2020 Phys. Rev. Lett. 124 147001
[46] Lu C, Gong W, Li Q and Chen C 2020 J. Phys. Chem. Lett. 11 9165
[47] Blakemore J S 1982 J. Appl. Phys. 53 R123
[48] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[49] Hill R 1952 Proc. Phys. Soc. London Sect. A 65 349
[50] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[51] Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
[52] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502
[53] Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 015502
[54] Li B, Sun H and Chen C 2016 Phys. Rev. Lett. 117 116103
[55] Gong W, Wang M, Liu C, Qin Z, Liu Y, Zhang X, Li Q and Zheng W 2017 J. Phys. Chem. C 121 26457
[56] Chen T P, Chen F R, Chuang Y C, Guo Y D, Peng J G, Huang T S and Chen L J 1992 J. Cryst. Growth 118 109
[57] Tse J S, Klug D D and Gao F M 2006 Phys. Rev. B 73 140102R
[58] Zhao Z S, Xu B and Tian Y J 2016 Annu. Rev. Mater. Res. 46 383
[59] Tahini H A, Chroneos A, Murphy S T, Schwingenschlögl U and Grimes R W 2013 J. Appl. Phys. 114 063517
[60] Philip P R, Stewart J C and David J T 2001 Phys. Rev. B 63 115206
[61] Rashid A, S J H, Hadi A, Maqsood A and Fazal A 2007 Comput. Mater. Sci. 39 580
Viewed
Full text


Abstract