Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 045203    DOI: 10.1088/0256-307X/38/4/045203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model
Yunpeng Zou1, V. S. Chan2,3, Wei Chen1*, Yongqin Wang1, Yumei Hou1, and Yiren Zhu1
1Southwestern Institute of Physics, Chengdu 610041, China 2General Atomics, San Diego, CA 92186, USA
3School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Yunpeng Zou, V. S. Chan, Wei Chen et al  2021 Chin. Phys. Lett. 38 045203
Download: PDF(647KB)   PDF(mobile)(642KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The critical gradient mode (CGM) is employed to predict the energetic particle (EP) transport induced by the Alfvén eigenmode (AE). To improve the model, the normalized critical density gradient is set as an inverse proportional function of energetic particle density; consequently, the threshold evolves during EP transport. Moreover, in order to consider the EP orbit loss mechanism in CGM, ORBIT code is employed to calculate the EP loss cone in phase space. With these improvements, the AE enhances EPs radial transport, pushing the particles into the loss cone. The combination of the two mechanisms raises the lost fraction to 6.6%, which is higher than the linear superposition of the two mechanisms. However, the loss is still far lower than that observed in current experiments. Avoiding significant overlap between the AE unstable region and the loss cone is a key factor in minimizing EP loss.
Received: 01 December 2020      Published: 06 April 2021
PACS:  52.25.Fi (Transport properties)  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.65.Cc (Particle orbit and trajectory)  
  52.65.Ff (Fokker-Planck and Vlasov equation)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2019TFE03020000), the National Natural Science Foundation of China (Grant Nos. 11875021, 12005054, and 12005055), the Sichuan Science and Technology Program (Grant No. 2020jqqn0070).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/045203       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/045203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yunpeng Zou
V. S. Chan
Wei Chen
Yongqin Wang
Yumei Hou
and Yiren Zhu
[1] Wan Y et al. 2017 Nucl. Fusion 57 102009
[2] Zhuang G et al. 2019 Nucl. Fusion 59 112010
[3] Chen W and Wang Z 2020 Chin. Phys. Lett. 37 125001
[4] Meneghini O et al. 2015 Nucl. Fusion 55 083008
[5] Lao L L et al. 1981 Phys. Fluids 24 1431
[6]Van Zeeland M A et al. 2011 Phys. Plasmas 5 056114
[7] Heidbrink W W et al. 2017 Phys. Plasmas 24 056109
[8] Pace D C et al. 2011 Nucl. Fusion 51 043012
[9] Todo Y, Berk H L and Breizman B N 2010 Nucl. Fusion 50 084016
[10] Todo Y et al. 2014 Nucl. Fusion 54 104012
[11] Bass E M and Waltz R E 2010 Phys. Plasmas 17 112319
[12] Fu G and Van Dam J W 1989 Phys. Fluids B: Plasma Phys. 1 1949
[13] He S, Waltz R E and Staebler G M 2017 Phys. Plasmas 24 072305
[14] Bass E M and Waltz R E 2017 Phys. Plasmas 24 122302
[15] Collins C S et al. 2017 Nucl. Fusion 57 086005
[16] Candy J and Waltz R E 2003 J. Comput. Phys. 186 545
[17] Waltz R E and Bass E M 2014 Nucl. Fusion 54 104006
[18] Waltz R E et al. 2015 Nucl. Fusion 55 123012
[19] He S and Waltz R E 2016 Nucl. Fusion 56 056004
[20] Betti R and Freidberg J P 1992 Phys. Fluids B: Plasma Phys. 4 1465
[21] Angioni C and Peeters A G 2008 Phys. Plasmas 15 052307
[22] White R B and Chance M S 1984 Phys. Fluids 27 2455
[23] Lao L L et al. 1985 Nucl. Fusion 25 1611
[24] Cheng C Z and Chance M S 1987 J. Comput. Phys. 71 124
[25] Estrada-Mila C, Candy J and Waltz R E 2006 Phys. Plasmas 13 112303
[26] Van Zeeland M A et al. 2012 Nucl. Fusion 52 094023
[27] Bass E M and Waltz R E 2020 Nucl. Fusion 60 016032
Viewed
Full text


Abstract