Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 045202    DOI: 10.1088/0256-307X/38/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Nonlinear Simulations of the Bump-on-Tail Instabilities in Tokamak Plasmas
Yumei Hou*, Wei Chen*, Liming Yu , Yunpeng Zou , Min Xu , and Xuru Duan 
Southwestern Institute of Physics, Chengdu 610041, China
Cite this article:   
Yumei Hou, Wei Chen, Liming Yu  et al  2021 Chin. Phys. Lett. 38 045202
Download: PDF(1359KB)   PDF(mobile)(1350KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We reproduce nonlinear behaviors, including frequency chirping and mode splitting, referred to as bump-on-tail instabilities. As has been reported in previous works, the generation and motion of phase-space hole-clump pairs in a kinetically driven, dissipative system can result in frequency chirping. We provide examples of frequency chirping, both with and without pure diffusion, in order to illustrate the role of the diffusion effect, which can suppress holes and clumps; Asymmetric frequency chirpings are produced with drag effect, which is essential to enhance holes, and suppress clumps. Although both diffusion and drag effect suppress the clumps, downward sweepings are observed, caused by a complicated interaction of diffusion and drag. In addition, we examine the discrepancies in frequency chirping between marginally unstable, and far from marginally unstable cases, which we elucidate by means of a dissipative system. In addition, mode splitting is also produced via BOT code for a marginal case with large diffusion.
Received: 30 November 2020      Published: 06 April 2021
PACS:  52.25.Dg (Plasma kinetic equations)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Supported by the National Key R&D Program of China (Grant No. 2019YFE03020000), the National Natural Science Foundation of China (Grant Nos. 11875021, 11875024, and 12005054), and the Sichuan Science and Technology Program (Grant No. 2020JQQN0070).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/045202       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/045202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yumei Hou
Wei Chen
Liming Yu 
Yunpeng Zou 
Min Xu 
and Xuru Duan 
[1] Chen W and Wang Z X 2020 Chin. Phys. Lett. 37 125001
[2] Wu Y B et al. 2019 Chin. Phys. Lett. 36 045201
[3] Chen Y et al. 2020 Chin. Phys. Lett. 37 095201
[4] Fisch N J and Herrmann M C 1994 Nucl. Fusion 34 1541
[5] Heidbrink W W et al. 1991 Nucl. Fusion 31 1635
[6] Wong K L et al. 1991 Phys. Rev. Lett. 66 1874
[7] Wan B N and the EASteam T 2020 Chin. Phys. Lett. 37 045202
[8] Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008
[9] Hu W, Feng H Y and Zhang W L 2019 Chin. Phys. Lett. 36 085201
[10] Heidbrink W W 1995 Plasma Phys. Control. Fusion 37 937
[11] Kusama Y et al. 1999 Nucl. Fusion 39 1837
[12] Pinches S D et al. 2004 Plasma Phys. Control. Fusion 46 S47
[13] Fredrickson E D et al. 2006 Nucl. Fusion 46 S926
[14] Hou Y M et al. 2018 Nucl. Fusion 58 096028
[15] Lilley M K, Breizman B N and Sharapov S E 2009 Phys. Rev. Lett. 102 195003
[16] Lilley M K, Breizman B N and Sharapov S E 2010 Phys. Plasmas 17 092305
[17] Lilley M K and Breizman B N 2012 Nucl. Fusion 52 094002
[18] Lilley M K and Nyqvist R M 2014 Phys. Rev. Lett. 112 155002
[19] Lesur M et al. 2010 Phys. Plasmas 17 122311
[20] Wang X Q et al. 2021 Plasma Phys. Control. Fusion 63 015004
[21] Zhang H S, Lin Z and Holod I 2012 Phys. Rev. Lett. 109 025001
[22] Wang X et al. 2012 Phys. Rev. E 86 045401
[23] Zhu J, Ma Z W and Fu G Y 2014 Nucl. Fusion 54 123020
[24] Fasoli A et al. 1998 Phys. Rev. Lett. 81 5564
[25] Hole M J and Appel L C 2009 Plasma Phys. Control. Fusion 51 045002
[26] Berk H L, Breizman B N and Ye H C 1992 Phys. Rev. Lett. 68 3563
[27] Berk H L, Breizman B N and Pekker M 1996 Phys. Rev. Lett. 76 1256
[28] Berk H L, Breizman B N and Petviashvili N V 1997 Phys. Lett. A 234 213
Viewed
Full text


Abstract