Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 014401    DOI: 10.1088/0256-307X/38/1/014401
How Does van der Waals Confinement Enhance Phonon Transport?
Xiaoxiang Yu1,2†, Dengke Ma1,3†, Chengcheng Deng2*, Xiao Wan2, Meng An1,4, Han Meng2, Xiaobo Li2, Xiaoming Huang2*, and Nuo Yang1,2*
1State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
2School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3NNU-SULI Thermal Energy Research Center (NSTER) & Center for Quantum Transport and Thermal Energy Science (CQTES), School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
4College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
Cite this article:   
Xiaoxiang Yu, Dengke Ma, Chengcheng Deng et al  2021 Chin. Phys. Lett. 38 014401
Download: PDF(2162KB)   PDF(mobile)(2630KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the mechanism of van der Waals (vdW) interactions on phonon transport in atomic scale, which would boost developments in heat management and energy conversion. Commonly, the vdW interactions are regarded as a hindrance in phonon transport. Here we propose that the vdW confinement can enhance phonon transport. Through molecular dynamics simulations, it is realized that the vdW confinement is able to make more than two-fold enhancement on thermal conductivity of both polyethylene single chain and graphene nanoribbon. The quantitative analyses of morphology, local vdW potential energy and dynamical properties are carried out to reveal the underlying physical mechanism. It is found that the confined vdW potential barriers reduce the atomic thermal displacement magnitudes, leading to less phonon scattering and facilitating thermal transport. Our study offers a new strategy to modulate the phonon transport.
Received: 06 October 2020      Published: 25 November 2020
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51606072 and 51576077).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Xiaoxiang Yu
Dengke Ma
Chengcheng Deng
Xiao Wan
Meng An
Han Meng
Xiaobo Li
Xiaoming Huang
and Nuo Yang
[1] Zhao R, Luo Y, Fernandezdominguez A I and Pendry J B 2013 Phys. Rev. Lett. 111 033602
[2] Beguin L, Vernier A, Chicireanu R, Lahaye T and Browaeys A 2013 Phys. Rev. Lett. 110 263201
[3] Rao A M, Chen J, Richter E, Schlecht U, Eklund P C, Haddon R C, Venkateswaran U D, Kwon Y K and Tomanek D 2001 Phys. Rev. Lett. 86 3895
[4] Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W and Podgornik R 2016 Rev. Mod. Phys. 88 045003
[5] Cardoso C, Soriano D, García-Martínez N A and Fernández-Rossier J 2018 Phys. Rev. Lett. 121 067701
[6] Mi X Y, Yu X, Yao K L, Huang X, Yang N and Lü J T 2015 Nano Lett. 15 5229
[7] Lee J H, Avsar A, Jung J, Tan J Y, Watanabe K et al. 2015 Nano Lett. 15 319
[8] Stornaiuolo M, De Kloe G E, Rucktooa P, Fish A, van Elk R et al. 2013 Nat. Commun. 4 1875
[9] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H et al. 2010 Science 328 213
[10] Zhang X, Bao H and Hu M 2015 Nanoscale 7 6014
[11] Ambrosetti A, Ferri N, Distasio R A and Tkatchenko A 2016 Science 351 1171
[12] Baxter J, Bian Z X, Chen G, Danielson D, Dresselhaus M S et al. 2009 Energy & Environ. Sci. 2 559
[13] Yang L, Yang N and Li B 2014 Nano Lett. 14 1734
[14] Ma D, Ding H, Meng H, Feng L, Wu Y, Shiomi J and Yang N 2016 Phys. Rev. B 94 165434
[15] Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[16] Shao C, Yu X, Yang N, Yue Y and Bao H 2017 Nanoscale Microscale Thermophys. Eng. 21 201
[17] Lindsay L, Broido D A and Mingo N 2011 Phys. Rev. B 83 235428
[18] Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N and Balandin A A 2010 Nat. Mater. 9 555
[19] Kuang Y, Lindsay L and Huang B 2015 Nano Lett. 15 6121
[20] Yang N, Ni X, Jiang J W and Li B 2012 Appl. Phys. Lett. 100 093107
[21] Hsu I K, Pettes M T, Bushmaker A, Aykol M, Shi L and Cronin S B 2009 Nano Lett. 9 590
[22] Lindsay L and Broido D A 2012 Phys. Rev. B 85 035436
[23] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Phys. Rev. Lett. 95 065502
[24] Yang J, Yang Y, Waltermire S W, Wu X, Zhang H et al. 2012 Nat. Nanotechnol. 7 91
[25] Zhang Q, Liu C, Liu X, Liu J, Cui Z et al. 2018 ACS Nano 12 2634
[26] Sun T, Wang J and Kang W 2013 Nanoscale 5 128
[27] Su R, Yuan Z, Wang J and Zheng Z 2015 Phys. Rev. E 91 012136
[28] Wang X, Kaviany M and Huang B 2017 Nanoscale 9 18022
[29] Liu Y, Ma Y, Zhao Y, Sun X, Gandara F et al. 2016 Science 351 365
[30] Tavakkoli K G A, Nicaise S M, Gadelrab K R, Alexander-Katz A, Ross C A and Berggren K K 2016 Nat. Commun. 7 10518
[31] Lee J H, Koh C Y, Singer J P, Jeon S J, Maldovan M, Stein O and Thomas E L 2014 Adv. Mater. 26 532
[32] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[33] Plimpton S 1995 J. Comput. Phys. 117 1
[34] Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601
[35] Kundu A, Dhar A and Narayan O 2009 J. Stat. Mech.: Theory Exp. 2009 L03001
[36] Das S G, Dhar A and Narayan O 2014 J. Stat. Phys. 154 204
[37] Tang N, Peng Z, Guo R, An M, Chen X, Li X, Yang N and Zang J 2017 Polymers 9 688
[38] Li S, Yu X, Bao H and Yang N 2018 J. Phys. Chem. C 122 13140
[39] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[40] Henry A, Chen G, Plimpton S J and Thompson A 2010 Phys. Rev. B 82 144308
[41] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[42] Liu A and Stuart S J 2008 J. Comput. Chem. 29 601
[43] Henry A and Chen G 2008 Phys. Rev. Lett. 101 235502
[44] Ye Z Q, Cao B Y, Yao W J, Feng T and Ruan X 2015 Carbon 93 915
[45] Zhang T and Luo T 2012 J. Appl. Phys. 112 094304
[46] Liao Q, Liu Z, Liu W, Deng C and Yang N 2015 Sci. Rep. 5 16543
[47] Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410
[48] Parrish K D, Jain A, Larkin J M, Saidi W A and McGaughey A J H 2014 Phys. Rev. B 90 235201
[49] Shulumba N, Hellman O and Minnich A J 2017 Phys. Rev. Lett. 119 185901
[50] Wang L and Li B 2008 Phys. Rev. Lett. 101 267203
[51] Liao B, Qiu B, Zhou J, Huberman S, Esfarjani K and Chen G 2015 Phys. Rev. Lett. 114 115901
[52] Oyake T, Feng L, Shiga T, Isogawa M, Nakamura Y and Shiomi J 2018 Phys. Rev. Lett. 120 045901
[53] Liao B, Zhou J and Chen G 2014 Phys. Rev. Lett. 113 025902
[54] Tamm A, Caro M, Caro A, Samolyuk G, Klintenberg M and Correa A A 2018 Phys. Rev. Lett. 120 185501
[55] Ihle D 1977 Phys. Status Solidi B 80 619
[56] Waldecker L, Bertoni R, Hubener H, Brumme T, Vasileiadis T, Zahn D, Rubio A and Ernstorfer R 2017 Phys. Rev. Lett. 119 036803
[57] Ma W L, Yang C Y, Gong X, Lee K and Heeger A J 2005 Adv. Funct. Mater. 15 1617
[58] Furchi M M, Pospischil A, Libisch F, Burgdorfer J and Mueller T 2014 Nano Lett. 14 4785
Full text