Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 015201    DOI: 10.1088/0256-307X/38/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials
Xin Zhu1, Feng Yan1*, Chunyan Li1, Lihong Qi1, Haoran Yuan1, Yanfeng Liu2, Chunling Zhu2*, and Yujin Chen1,2,3*
1Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), and College of Science, Harbin Engineering University, Harbin 150001, China
2College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
3School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Cite this article:   
Xin Zhu, Feng Yan, Chunyan Li et al  2021 Chin. Phys. Lett. 38 015201
Download: PDF(3804KB)   PDF(mobile)(3899KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Due to the limitations of impedance matching and attenuation matching, carbon nanotubes (CNTs) employed alone have a weak capacity to attenuate electromagnetic wave (EMW) energy. In this work, B and N co-doped CNTs with embedded Ni nanoparticles (Ni@BNCNTs) are fabricated via an in situ doping method. Compared with a sample without B doping, Ni@BNCNTs demonstrate a superior EMW absorption performance, with all minimum reflection loss values below $-20$ dB, even at a matching thickness of 1.5 mm. The experimental and theoretical calculation results demonstrate that B doping increases conduction and polarization relaxation losses, as well as the impedance matching characteristic, which is responsible for the enhanced EMW absorption performance of Ni@BNCNTs.
Received: 20 September 2020      Published: 06 January 2021
PACS:  52.70.Gw (Radio-frequency and microwave measurements)  
  52.70.Ds (Electric and magnetic measurements)  
  77.84.Lf (Composite materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51972077), the Heilongjiang Touyan Innovation Team Program, and the Fundamental Research Funds for the Central Universities (Grant Nos. 3072020CF2518, 3072020CFT2505, and 3072020CFJ2503).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/015201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/015201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Zhu
Feng Yan
Chunyan Li
Lihong Qi
Haoran Yuan
Yanfeng Liu
Chunling Zhu
and Yujin Chen
[1] Yan L W, Hong C Q, Sun B Q, Zhao G D, Cheng Y H, Dong S, Zhang D Y and Zhang X H 2017 ACS Appl. Mater. & Interfaces 9 6320
[2] Liu P B, Zhang Y Q, Yan J, Huang Y, Xia L and Guang Z X 2019 Chem. Eng. J. 368 285
[3] Wang D T, Wang X C, Zhang X, Yuan H R and Chen Y J 2020 Chin. Phys. Lett. 37 045201
[4] Jian X, Wu B, Wei Y F, Dou S X, Wang X L, He W D and Mahmood N 2016 ACS Appl. Mater. & Interfaces 8 6101
[5] Yang M L, Yuan Y, Li Y, Sun X X, Wang S S, Liang L, Ning Y H, Li J J, Yin W L, Che R C and Li Y B 2020 Carbon 161 517
[6] Andrey S, Andreev Mariya A, Kazakova A V, Ishchenko A G, Selyutin O B, Lapina V L and de Lacaillerie K J B D 2017 Carbon 114 39
[7] Lin H Y, Zhu H, Guo H F and Yu L F 2007 Mater. Lett. 61 3547
[8] Qing Y C, Zhou W C, Luo F and Zhu D M 2010 Carbon 48 4074
[9] Li N, Huang G W, Li Y Q, Xiao H M, Feng Q P, Hu N and Fu S Y 2017 ACS Appl. Mater. & Interfaces 9 2973
[10]Shen C and Zhao D 2001 New Carbon Mater. 16 1
[11] Liu L L, Zhang S, Yan F, Li C Y, Zhu C L, Zhang X T and Chen Y J 2018 ACS Appl. Mater. & Interfaces 10 14108
[12] Xu J, Shi Y N, Zhang X C, Yuan H R, Li B, Zhu C L, Zhang X T and Chen Y J 2020 J. Mater. Chem. C 8 7847
[13] Zhang X C, Xu J, Yuan H R, Zhang S, Ouyang Q Y, Zhu C L, Zhang X T and Chen Y J 2019 ACS Appl. Mater. & Interfaces 11 39100
[14] Li K Y, Sun H, Yuan H R, Zhang S, Zhang X, Zhu C L, Zhang X T and Chen Y J 2020 J. Alloys Compd. 821 153267
[15] Ning M Q, Li J B, Kuang B Y, Wang C Z, Su D Z, Zhao Y J, Jin H B and Cao M S 2018 Appl. Surf. Sci. 447 244
[16] Zhang X C, Zhang X, Yuan H R, Li K Y, Ouyang Q Y, Zhu C L, Zhang S and Chen Y J 2020 Chem. Eng. J. 383 123208
[17] Ma X Z, Li K Y, Zhang X, Wei B, Yang H, Liu L N, Zhang M Y, Zhang X T and Chen Y J 2019 J. Mater. Chem. A 7 14904
[18] Guo Y Y, Yuan P F, Zhang J N, Hu Y F, Amiinu I S, Wang X, Zhou J G, Xia H C, Song Z B, Xu Q and Mu S C 2018 ACS Nano 12 1894
[19] Stephan O, Ajayan P M, Colliex C, Ph R, Lambert J M, Bernier P and Lefin P 1994 Science 266 1683
[20] Feng J, Pu F Z, Li Z X, Li X H, Hu X Y and Bai J T 2016 Carbon 104 214
[21] Quan B, Liang X H, Ji G B, Cheng Y, Liu W, Ma J N, Zhang Y N, Li D R and Xu G Y 2017 J. Alloys Compd. 728 1065
[22] Panchakarla L S, Govindaraj A and Rao C N R 2010 Inorg. Chim. Acta 363 4163
[23] Zhang X C, Yan F, Zhang S, Yuan H R, Zhu C L, Zhang X and Chen Y J 2018 ACS Appl. Mater. & Interfaces 10 24920
[24] Nguyen T T H, Le V K, Minh C L and Nguyen N H 2017 Comput. Theor. Chem. 1100 46
[25] Yan F, Zhang S, Zhang X, Li C Y, Zhu C L, Zhang X T and Chen Y J 2018 J. Mater. Chem. C 6 12781
[26] Li Y J, Huang B L, Sun Y J, Luo M C, Yang Y, Qin Y N, Wang L, Li C J, Lv F, Zhang W Y and Guo S J 2019 Small 15 1804212
[27] Chen B H, He X B, Yin F X, Wang H, Liu D J, Shi R X, Chen J N and Yin H W 2017 Adv. Funct. Mater. 27 1700795
[28] Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W and Hu Z 2011 Angew. Chem. Int. Ed. 50 7132
[29] Ozaki J, Kimura N, Anahara T and Oya A 2007 Carbon 45 1847
[30] Feng J, Zong Y, Sun Y, Zhang Y, Yang X, Long G K, Wang Y, Li X H and Zheng X L 2018 Chem. Eng. J. 345 441
[31] Wu Z C, Pei K, Xing L S, Yu X F, You W B and Che R C 2019 Adv. Funct. Mater. 29 1901448
[32] Yuan H R, Li B, Zhu C L, Xie Y, Jiang Y J and Chen Y J 2020 Appl. Phys. Lett. 116 153101
[33] Liu J W, Che R C, Chen H J, Zhang F, Xia F, Wu Q S and Wang M 2012 Small 8 1214
[34] Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J and Che R C 2016 Adv. Mater. 28 486
[35] Wen B, Cao M S, Lu M M, Cao W Q, Shi H L, Liu J, Wang X X, Jin H B, Fang X Y, Wang W Z and Yuan J 2014 Adv. Mater. 26 3484
[36] Aharoni A 1991 J. Appl. Phys. 69 7762
[37] Wilts C H, Lai S K C 1972 IEEE Trans. Magn. 8 280
[38] Li X H, Feng J, Du Y P, Bai J T, Fan H M, Zhang H L, Peng Y and Li F S 2015 J. Mater. Chem. A 3 5535
[39] Wang H, Dai Y Y, Gong W J, Geng D Y, Ma S, Li D, Liu W and Zhang Z D 2013 Appl. Phys. Lett. 102 223113
[40] Wu Q L, Wang J, Jin H H, Yan T Y, Yi G Q, Su X G, Dai W and Wang X 2019 Mater. Lett. 244 138
[41] Xiang J, Li J L, Zhang X H, Ye Q, Xu J H and Shen X Q 2014 J. Mater. Chem. A 2 16905
[42] Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B and Lei J P 2006 Appl. Phys. Lett. 89 053115
[43] Chen Y J, Xiao G, Wang T S, Ouyang Q Y, Qi L H, Ma Y, Gao P, Zhu C L, Cao M S and Jin H B 2011 J. Phys. Chem. C 115 13603
[44] Sun G B, Wu H, Liao Q L and Zhang Y 2018 Nano Res. 11 2689
[45] Wen F S, Hou H, Xiang J Y, Zhang X Y, Su Z B, Yuan S J and Liu Z Y 2015 Carbon 89 372
Viewed
Full text


Abstract