Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 070302    DOI: 10.1088/0256-307X/37/7/070302
A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing
Y.-K. Wu  and L.-M. Duan*
Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, China
Cite this article:   
Y.-K. Wu  and L.-M. Duan 2020 Chin. Phys. Lett. 37 070302
Download: PDF(1064KB)   PDF(mobile)(1622KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Building blocks of quantum computers have been demonstrated in small to intermediate-scale systems. As one of the leading platforms, the trapped ion system has attracted wide attention. A significant challenge in this system is to combine fast high-fidelity gates with scalability and convenience in ion trap fabrication. Here we propose an architecture for large-scale quantum computing with a two-dimensional array of atomic ions trapped at such large distance which is convenient for ion-trap fabrication but usually believed to be unsuitable for quantum computing as the conventional gates would be too slow. Using gate operations far outside of the Lamb–Dicke region, we show that fast and robust entangling gates can be realized in any large ion arrays. The gate operations are intrinsically parallel and robust to thermal noise, which, together with their high speed and scalability of the proposed architecture, makes this approach an attractive one for large-scale quantum computing.
Received: 02 June 2020      Published: 14 June 2020
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  37.10.Ty (Ion trapping)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Y.-K. Wu  and L.-M. Duan
[1]Nielsen M, Chuang I 2000 Quantum Computation and Quantum Information (Cambridge University Press)
[2] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[3] Harty T P, Allcock D T C, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N and Lucas D M 2014 Phys. Rev. Lett. 113 220501
[4] Ballance C J, Harty T P, Linke N M, Sepiol M A and Lucas D M 2016 Phys. Rev. Lett. 117 060504
[5] Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D and Wineland D J 2016 Phys. Rev. Lett. 117 060505
[6] Monz T, Nigg D, Martinez E A, Brandl M F, Schindler P, Rines R, Wang S X, Chuang I L and Blatt R 2016 Science 351 1068
[7] Wright K, Beck K, Debnath S, Amini J, Nam Y, Grzesiak N, Chen J S, Pisenti N, Chmielewski M, Collins C et al. 2019 Nat. Commun. 10 1
[8] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[9] Gambetta J M, Chow J M and Steffen M 2017 npj Quantum Inf. 3 1
[10] Wendin G 2017 Rep. Prog. Phys. 80 106001
[11] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A et al. 2019 Nature 574 505
[12] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86 032324
[13] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E and Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259
[14] Hughes R J, James D F V, Knill E H, Laflamme R and Petschek A G 1996 Phys. Rev. Lett. 77 3240
[15]Clark R 2001 Proceedings of the 1st International Conference on Experimental Implementation of Quantum Computation: Sydney, Australia, 16–19 January 2001 (Rinton Press)
[16] Monroe C and Kim J 2013 Science 339 1164
[17] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[18] Cirac J I and Zoller P 2000 Nature 404 579
[19]Duan L M, Blinov B B, Moehring D L and Monroe C 2004 Quantum Inf. Comput. 4 165
[20] Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209
[21] Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M and Kim J 2014 Phys. Rev. A 89 022317
[22] Shen C and Duan L M 2014 Phys. Rev. A 90 022332
[23] Wang S T, Shen C and Duan L M 2015 Sci. Rep. 5 8555
[24]Wu Y 2019 Ph.D. thesis, University of Michigan Ann Arbor
[25] Zou P, Xu J, Song W and Zhu S L 2010 Phys. Lett. A 374 1425
[26] Kumph M, Brownnutt M and Blatt R 2011 New J. Phys. 13 073043
[27] Sterling R C, Rattanasonti H, Weidt S, Lake K, Srinivasan P, Webster S, Kraft M and Hensinger W K 2014 Nat. Commun. 5 3637
[28] García-Ripoll J J, Zoller P and Cirac J I 2003 Phys. Rev. Lett. 91 157901
[29] Duan L M 2004 Phys. Rev. Lett. 93 100502
[30] Ratcliffe A K, Taylor R L, Hope J J and Carvalho A R R 2018 Phys. Rev. Lett. 120 220501
[31] Gale E P G, Mehdi Z, Oberg L M, Ratcliffe A K, Haine S A and Hope J J 2020 Phys. Rev. A 101 052328
[32] Wong-Campos J D, Moses S A, Johnson K G and Monroe C 2017 Phys. Rev. Lett. 119 230501
[33]Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R, and Wineland D J 2005 Quantum Inf. Comput. 5 419
[34] Ouyang Z, Gao L, Fico M, Chappell W, Noll R and Cooks R 2007 Eur. J. Mass Spectrom. 13 13
[35] Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001
[36] Landsman K A, Wu Y, Leung P H, Zhu D, Linke N M, Brown K R, Duan L and Monroe C 2019 Phys. Rev. A 100 022332
[37] Lu Y, Zhang S, Zhang K, Chen W, Shen Y, Zhang J, Zhang J N and Kim K 2019 Nature 572 363
[38] Figgatt C, Ostrander A, Linke N M, Landsman K A, Zhu D, Maslov D and Monroe C 2019 Nature 572 368
[39] Zhu S L, Monroe C and Duan L M 2006 Europhys. Lett. 73 1
Related articles from Frontiers Journals
[1] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 070302
[2] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 070302
[3] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 070302
[4] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 070302
[5] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 070302
[6] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 070302
[7] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 070302
[8] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 070302
[9] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 070302
[10] Shu-Hong Hao, Xian-Shan Huang, Dong Wang. General Single-Mode Gaussian Operation with Two-Mode Entangled State[J]. Chin. Phys. Lett., 2017, 34(7): 070302
[11] Yu Wang, Qi Su. Implementing Classical Hadamard Transform Algorithm by Continuous Variable Cluster State[J]. Chin. Phys. Lett., 2017, 34(7): 070302
[12] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 070302
[13] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 070302
[14] Yang-Qing Guo, Nian-Quan Jiang. Controllably Coupling Superconducting Charge and Flux Qubits by Using Nanomechanical Resonator[J]. Chin. Phys. Lett., 2017, 34(5): 070302
[15] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 070302
Full text