Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 070301    DOI: 10.1088/0256-307X/37/7/070301
GENERAL |
Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States
Hongbin Liang1, Jiancheng Pei1, and Xiaoguang Wang1,2*
1Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
2Graduate School of China Academy of Engineering Physics, Beijing 100193, China
Cite this article:   
Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang 2020 Chin. Phys. Lett. 37 070301
Download: PDF(545KB)   PDF(mobile)(537KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To enhance the phase sensitivity of Mach–Zehnder interferometers, we use a tunable phase shift before the light beams are injected into the interferometer. The analytical result of the optimal phase shift is obtained, which only depends on the initial input states. For a non-zero optimal phase shift, the phase sensitivity of the interferometers in the output ports is always enhanced. We can achieve this enhancement for most states, including entangled and mixed states. The optimal phase shift is exhibited in three examples. Compared to previous methods, this scheme provides a general way to improve phase sensitivity and could find wide applications in optical phase estimations.
Received: 25 March 2020      Published: 21 June 2020
PACS:  03.67.-a (Quantum information)  
  06.90.+v (Other topics in metrology, measurements, and laboratory procedures)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11875231 and 11935012), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304202 and 2017YFA0205700), and the Fundamental Research Funds for the Central Universities (Grant No. 2018FZA3005).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/070301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/070301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongbin Liang
Jiancheng Pei
and Xiaoguang Wang
[1] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[2] Pezzè L, Hyllus P and Smerzi A 2015 Phys. Rev. A 91 032103
[3] Liu J, Jing X and Wang X 2013 Phys. Rev. A 88 042316
[4] Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601
[5] Campos R A, Saleh B E A and Teich M C 1989 Phys. Rev. A 40 1371
[6] Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
[7] Sanders B C and Milburn G J 1995 Phys. Rev. Lett. 75 2944
[8] Jarzyna M and Demkowicz-Dobrzański R 2012 Phys. Rev. A 85 011801
[9] Gabbrielli M, Pezzè L and Smerzi A 2015 Phys. Rev. Lett. 115 163002
[10] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[11] Liu J, Yuan H, Lu X M and Wang X 2020 J. Phys. A 53 023001
[12] Tan Q S, Liao J Q, Wang X and Nori F 2014 Phys. Rev. A 89 053822
[13] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[14] Seshadreesan K P, Anisimov P M, Lee H and Dowling J P 2011 New J. Phys. 13 083026
[15] Pezzé L and Smerzi A 2013 Phys. Rev. Lett. 110 163604
[16] Takeoka M, Seshadreesan K P, You C, Izumi S and Dowling J P 2017 Phys. Rev. A 96 052118
[17] Lang M D and Caves C M 2014 Phys. Rev. A 90 025802
[18] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. Lett. 102 040403
[19] Pang S and Brun T A 2014 Phys. Rev. A 90 022117
[20] Liu J, Jing X X and Wang X 2015 Sci. Rep. 5 8565
[21] Hyllus P, Pezzé L and Smerzi A 2010 Phys. Rev. Lett. 105 120501
[22] Helstrom C W 1969 J. Stat. Phys. 1 231
[23] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[24] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[25] Zhang S J, Ma H X, Wang X, Zhou C, Bao W S and Zhang H L 2019 Chin. Phys. B 28 80304
[26] Song W, Huang Y S, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 088701
[27] Wang C Q, Zou J and Zhang Z M 2016 Chin. Phys. Lett. 33 024202
[28] Yu X, Zhao X, Shen L, Shao Y, Liu J and Wang X 2018 Opt. Express 26 16292
[29] Liu J and Yuan H 2017 Phys. Rev. A 96 042114
[30] Liu J and Yuan H 2017 Phys. Rev. A 96 012117
[31] Liu J, Jing X X, Zhong W and Wang X G 2014 Commun. Theor. Phys. 61 45
[32] Liu J, Xiong H N, Song F and Wang X 2014 Physica A 410 167
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 070301
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 070301
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 070301
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070301
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070301
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 070301
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 070301
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 070301
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 070301
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 070301
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 070301
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 070301
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 070301
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 070301
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 070301
Viewed
Full text


Abstract