Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 117303    DOI: 10.1088/0256-307X/37/11/117303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry
Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou*
Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
Cite this article:   
Xiao-Ran Wang , Cui-Xian Guo , Qian Du  et al  2020 Chin. Phys. Lett. 37 117303
Download: PDF(960KB)   PDF(mobile)(935KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Breakdown of bulk-boundary correspondence in non-Hermitian (NH) topological systems with generalized inversion symmetries is a controversial issue. The non-Bloch topological invariants determine the existence of edge states, but fail to describe the number and distribution of defective edge states in non-Hermitian topological systems. The state-dependent topological invariants, instead of a global topological invariant, are developed to accurately characterize the bulk-boundary correspondence of the NH systems, which is very different from their Hermitian counterparts. At the same time, we obtain the accurate phase diagram of the one-dimensional non-Hermitian Su–Schrieffer–Heeger model with a generalized inversion symmetry from the state-dependent topological invariants. Therefore, these results will be helpful for understanding the exotic topological properties of various non-Hermitian systems.
Received: 18 August 2020      Published: 08 November 2020
PACS:  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  73.43.Nq (Quantum phase transitions)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11674026 and 11974053).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/117303       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/117303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Ran Wang 
Cui-Xian Guo 
Qian Du 
and Su-Peng Kou
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[4] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[7] Alicea J 2012 Rep. Prog. Phys. 75 076501
[8] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[9] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[10] Rudner M S and Levitov L S 2009 Phys. Rev. Lett. 102 065703
[11] Esaki K, Sato M, Hasebe K and Kohmoto M 2011 Phys. Rev. B 84 205128
[12] Kawabata K, Ashida Y, Katsura H and Ueda M 2018 Phys. Rev. B 98 085116
[13] Liang S D and Huang G Y 2013 Phys. Rev. A 87 012118
[14] Zhu B, Lü R and Chen S 2014 Phys. Rev. A 89 062102
[15] Lee T E 2016 Phys. Rev. Lett. 116 133903
[16] Xu Y, Wang S T and Duan L M 2017 Phys. Rev. Lett. 118 045701
[17] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
[18] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[19] Xiong Y 2018 J. Phys. Commun. 2 035043
[20] Hu Y C and Hughes T L 2011 Phys. Rev. B 84 153101
[21] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[22] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[23] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[24] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[25] Yin C, Jiang H, Li L, Lü R and Chen S 2018 Phys. Rev. A 97 052115
[26] Kawabata K, Shiozaki K and Ueda M 2018 Phys. Rev. B 98 165148
[27] Alvarez V M M, Vargas J E B, Berdakin M and Torres L E F F 2018 Eur. Phys. J. Spec. Top. 227 1295
[28] Alvarez V M M, Vargas J E B and Torres L E F F 2018 Phys. Rev. B 97 121401(R)
[29] Jiang H, Yang C and Chen S 2018 Phys. Rev. A 98 052116
[30] McDonald A, Pereg-Barnea T and Clerk A A 2018 Phys. Rev. X 8 041031
[31] Zirnstein H G, Refael G and Rosenow B 2019 arXiv:1901.11241 [cond-mat.mes-hall]
[32] Jin L and Song Z 2019 Phys. Rev. B 99 081103
Lin S, Jin L and Song Z 2019 Phys. Rev. B 99 165148
Zhang K L, Wu H C, Jin L and Song Z 2019 Phys. Rev. B 100 045141
[33] Lee C H and Thomale R 2019 Phys. Rev. B 99 201103(R)
Lee C H, Li G, Liu Y, Tai T, Thomale R and Zhang X 2018 arXiv:1812.02011 [cond-mat.mes-hall]
[34] Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M and Nori F 2019 Phys. Rev. Lett. 122 076801
[35] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[36] Zhou H and Lee J Y 2019 Phys. Rev. B 99 235112
[37] Liu C H, Jiang H and Chen S 2019 Phys. Rev. B 99 125103
[38] Herviou L, Bardarson J H and Regnault N 2019 Phys. Rev. A 99 052118
[39] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
[40] Chen R, Chen C Z, Zhou B and Xu D H 2019 Phys. Rev. B 99 155431
[41] Deng T S and Yi W 2019 Phys. Rev. B 100 035102
[42] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 170401
[43] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 246801
[44] Luo X W and Zhang C 2019 Phys. Rev. Lett. 123 073601
[45] Okuma N and Sato M 2019 Phys. Rev. Lett. 123 097701
[46] Bergholtz E J and Budich J C 2019 Phys. Rev. Res. 1 012003(R)
[47] Lee J Y, Ahn J, Zhou H and Vishwanath A 2019 Phys. Rev. Lett. 123 206404
[48] Rui W B, Hirschmann M M and Schnyder A P 2019 Phys. Rev. B 100 245116
[49] Schomerus H 2020 Phys. Rev. Res. 2 013058
[50] Imura K I and Takane Y 2019 Phys. Rev. B 100 165430
[51] Herviou L, Regnault N and Bardarson J H 2019 SciPost Phys. 7 069
[52] Chang P Y, You J S, Wen X and Ryu S 2020 Phys. Rev. Res. 2 033069
[53] Zhang X X and Franz M 2020 Phys. Rev. Lett. 124 046401
[54] Zhang K, Yang Z and Fang C 2019 arXiv:1910.01131 [cond-mat.mes-hall]
Yang Z, Zhang K, Fang C and Hu J 2019 arXiv:1912.05499 [cond-mat.mes-hall]
[55] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[56] Longhi S 2020 Phys. Rev. Lett. 124 066602
[57] Wang X R, Guo C X and Kou S P 2020 Phys. Rev. B 101 121115(R)
[58] Yoshida T, Mizoguchi T and Hatsugai Y 2020 Phys. Rev. Res. 2 022062
[59] Kawabata K, Okuma N and Sato M 2020 arXiv:2003.07597v1 [cond-mat.mes-hall]
[60] Wang C, Wang X R, Guo C X and Kou S P 2020 Int. J. Mod. Phys. B 34 20501465
[61] Yang M L, Wang H, Guo C X, Wang X R, Sun G Y and Kou S P 2020 arXiv:2006.10278V2 [cond-mat.str-el]
[62] Zhao X M, Guo C X, Yang M L, Wang H, Liu W M and Kou S P 2020 arXiv:2007.03864V1 [cond-mat.mes-hall]
[63] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402
[64] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C and Szameit A 2017 Nat. Mater. 16 433
[65] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117
[66] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M M and Zhen B 2018 Science 359 1009
[67] Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N and Khajavikhan M 2018 Science 359 4005
Harari G, Bandres M A, Lumer Y, M, Rechtsman C, Chong Y D, Khajavikhan M, Christodoulides D N and Segev M 2018 Science 358 eaar4003
[68] Cerjan A, Huang S, Wang M, Chen K P, Chong Y and Rechtsman M C 2019 Nat. Photon. 13 623
[69] Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Sanders B C, Yi W and Xue P 2019 Nat. Commun. 10 2293
[70] Zhao H, Qiao X, Wu T, Midya B, Longhi S and Feng L 2019 Science 365 1163
[71] Brandenbourger M, Locsin X and Lerner E 2019 Nat. Commun. 10 4608
Ghatak A, Brandenbourger M, van Wezel J and Coulais C 2019 arXiv:1907.11619 [cond-mat.mes-hall]
[72] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761
[73] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747
Related articles from Frontiers Journals
[1] Cheng Cao, Shengru Chen, Jun Deng, Gang Li, Qinghua Zhang, Lin Gu, Tian-Ping Ying, Er-Jia Guo, Jian-Gang Guo, and Xiaolong Chen. Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO$_{3}$ Interface[J]. Chin. Phys. Lett., 2022, 39(4): 117303
[2] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 117303
[3] O. Ozturk, E. Ozturk, S. Elagoz. Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field[J]. Chin. Phys. Lett., 2019, 36(6): 117303
[4] Jin-Song Luo, Jie Lin, Li-Gong Zhang, Xiao-Yang Guo, Yong-Fu Zhu. Dependence of Thermal Annealing on Transparent Conducting Properties of HoF$_{3}$-Doped ZnO Thin Films[J]. Chin. Phys. Lett., 2019, 36(5): 117303
[5] Ruo-Yu Zhang, Ji-Ming Zheng, Zhen-Yi Jiang. Strain Effects on Properties of Phosphorene and Phosphorene Nanoribbons: a DFT and Tight Binding Study[J]. Chin. Phys. Lett., 2018, 35(1): 117303
[6] Cheng-Hua Fan, Qun-Jing Wang, Zhen-Fa Zi. Remanence Enhancement Effect in Ni$_{0.7}$Zn$_{0.3}$Fe$_{2}$O$_{4}$/Co$_{0.8}$Fe$_{2.2}$O$_{4}$ Ferrite Multilayer Film[J]. Chin. Phys. Lett., 2016, 33(11): 117303
[7] Jun-Song Liu, Hang Li, Bo-Wen Sun, Zhan-Hui Ding, Qi-Liang Wang, Shao-Heng Cheng, Hong-Dong Li. Boron-Doped Diamond-Film-Based Two-Dimensional Electrode of Electrophoresis Tank[J]. Chin. Phys. Lett., 2016, 33(11): 117303
[8] FENG Bao-Jie, LI Wen-Bin, QIU Jing-Lan, CHENG Peng, CHEN Lan, WU Ke-Hui. Variable Coupling Strength of Silicene on Ag(111)[J]. Chin. Phys. Lett., 2015, 32(03): 117303
[9] FENG Ya, FENG Bao-Jie, XIE Zhuo-Jin, LI Wen-Bin, LIU Xu, LIU De-Fa, ZHAO Lin, CHEN Lan, ZHOU Xing-Jiang, WU Ke-Hui. Observation of a Flat Band in Silicene[J]. Chin. Phys. Lett., 2014, 31(12): 117303
[10] LIU Rui, QIU Gang, CHEN Bing, GAO Bin, KANG Jin-Feng. Degradation Characteristics of Resistive Switching Memory Devices Correlated with Electric Field Induced Ion-Migration Effect of Anode[J]. Chin. Phys. Lett., 2013, 30(11): 117303
[11] ZHU De-Ming, MEN Chuan-Ling, WAN Xiang, DENG Chuang, LI Zhen-Peng. Self-Assembled in-Plane-Gate Thin-Film Transistors Gated by WOx Solid-State Electrolytes[J]. Chin. Phys. Lett., 2013, 30(8): 117303
[12] XU Gao-Bo, XU Qiu-Xia, YIN Hua-Xiang, ZHOU Hua-Jie, YANG Tao, NIU Jie-Bin, HE Xiao-Bin, MENG Ling-Kuan, YU Jia-Han, LI Jun-Feng, YAN Jiang, ZHAO Chao, CHEN Da-Peng. Characterization of HfSiAlON/MoAlN PMOSFETs Fabricated by Using a Novel Gate-Last Process[J]. Chin. Phys. Lett., 2013, 30(8): 117303
[13] E. OZTURK. Effect of Magnetic Field on a p-Type δ-Doped GaAs Layer[J]. Chin. Phys. Lett., 2010, 27(7): 117303
[14] ZHAO Zi-Wen, HU Li-Zhong, ZHANG He-Qiu, SUN Jing-Chang, BIAN Ji-Ming, SUN Kai-Tong, CHEN Xi, ZHAO Jian-Ze, LI Xue, ZHU Jin-Xia,. Effect of Different Substrate Temperature on Sb-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition on Sapphire Substrates[J]. Chin. Phys. Lett., 2010, 27(1): 117303
[15] ZHAO Zi-Wen, HU Li-Zhong, ZHANG He-Qiu, SUN Jing-Chang, BIAN Ji-Ming, LIANG Hong-Wei, HUO Bing-Zhi, YU Dong-Qi, CHEN Xi, FU Qiang. Effect of Different Substrate Temperature on Phosphorus-Doped ZnO Thin Films Prepared by PLD on Sapphire Substrates[J]. Chin. Phys. Lett., 2009, 26(5): 117303
Viewed
Full text


Abstract