Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 070601    DOI: 10.1088/0256-307X/36/7/070601
GENERAL |
Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks
Wen-Bing Li1**, Qiang Hao2**, Yuan-Bo Du1, Shao-Qing Huang1, Peter Yun2, Ze-Huang Lu1**
1MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074
2Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600
Cite this article:   
Wen-Bing Li, Qiang Hao, Yuan-Bo Du et al  2019 Chin. Phys. Lett. 36 070601
Download: PDF(572KB)   PDF(mobile)(563KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop (PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz oven controlled crystal oscillator (OCXO) utilizing the sub-sampling PLL. Then the 6.8 GHz is mixed with 35 MHz from an direct digital synthesizer (DDS) which is also referenced to the 100 MHZ OCXO to generate the final 6.835 GHz signal. Benefiting from the sub-sampling PLL, the processes of frequency multiplication, which are usually necessary in the development of a microwave source, are greatly simplified. The architecture of the microwave source is pretty simple. Correspondingly, its power consumption and cost are low. The absolute phase noises of the 6.835 GHz output signal are $-$47 dBc/Hz, $-$77 dBc/Hz, $-$104 dBc/Hz and $-$121 dBc/Hz at 1 Hz, 10 Hz, 100 Hz and 1 kHz offset frequencies, respectively. The frequency stability limited by the phase noise through the Dick effect is theoretically estimated to be better than $5.0 \times 10^{-14}\tau^{1/2}$ when it is used as the local oscillator of the Rb atomic clocks. This low phase noise microwave source can also be used in other experiments of precision measurement physics.
Received: 24 February 2019      Published: 20 June 2019
PACS:  06.30.Ft (Time and frequency)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0304400, and the National Natural Science Foundation of China under Grant Nos 91336213, 11703031, U1731132 and 11774108.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/070601       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/070601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Bing Li
Qiang Hao
Yuan-Bo Du
Shao-Qing Huang
Peter Yun
Ze-Huang Lu
[1]Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043601
[2]Ashby N, Heavner T P, Jefferts S R, Parker T E, Radnaev A G and Dudin Y O 2007 Phys. Rev. Lett. 98 070802
[3]Fortier T M, Ashby N, Bergquist J C, Delaney M J, Diddams S A, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Kim K, Levi F, Lorini L, Oskay W H, Parker T E, Shirley J and Stalnaker J E 2007 Phys. Rev. Lett. 98 070801
[4]Chen Z L, Bohnet J G, Weiner J M and Thompson J K 2012 Rev. Sci. Instrum. 83 044701
[5]Du Y B, Wei R, Dong R C, Zou F and Wang Y Z 2015 Chin. Phys. B 24 070601
[6]Levi F, Calonico D, Calosso C E, Godone A, Micalizio S and Costanzo G A 2014 Metrologia 51 270
[7]Ramírez-Martinez F, Lours M, Rosenbusch P, Reinhard F and Reichel J 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 88
[8]François B, Calosso C E, Danet J M and Boudot R 2014 Rev. Sci. Instrum. 85 094709
[9]Boudot R, Guerandel S and De Clercq E 2009 IEEE Trans. Instrum. Meas. 58 3659
[10]Li W B, Du Y B, Li H and Lu Z H 2018 AIP Adv. 8 095311
[11]François B, Calosso C E, Abdel Hafiz M, Micalizio S and Boudot R 2015 Rev. Sci. Instrum. 86 094707
[12]Heavner T P, Jefferts S R, Donley E A, Parker T E and Levi F 2005 Proceedings of the 2005 IEEE Int. Freq. Control Symp. Exposition 86 308
[13]Camparo J C 2007 Phys. Today 60 33
[14]Vannicola F, Beard R, White J, Senior K, Largay M and Buisson J A 2014 Proceedings of 42nd PTTI System and Applications Meeting p 181
[15]Micalizio S, Levi F, Godone A, Calosso C E and Nazionale I 2015 Proceedings IFCS EFTF 1
[16]Bandi T, Affolderbach C, Stefanucci C, Merli F, Skrivervik A K and Mileti G 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1769
[17]Hao Q, Li W B, He S G, Lv J F, Wang P F and Mei G H 2016 Rev. Sci. Instrum. 87 123111
[18]Calosso C E, Godone A, Levi F and Micalizio S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 2646
[19]Deng J Q, Mileti G, Drullinger R E, Jennings D A and Walls F L 1999 Phys. Rev. A 59 773
[20]Dick G J 1987 Proc. PTTI 19 133
[21]Joyet A, Mileti G, Dudle G and Thomann P 2001 IEEE Trans. Instrum. Meas. 50 150
[22]Zhang J W, Miao K and Wang L J 2015 Chin. Phys. Lett. 32 010601
[23]Wang X M, Meng Y L, Wang Y N, Wan J Y, Yu M Y, Wnag X, Xiao L, Li T, Cheng H D and Liu L 2017 Chin. Phys. Lett. 34 063702
[24]Micalizio S, Calosso C E, Godone A and Levi F 2012 Metrologia 49 425
[25]Yan L L, Zhao W Y, Zhang Y Y, Tai Z Y, Zhang P, Rao B J, Ning K, Zhang X F, Guo W G, Zhang S G and Jiang H F 2018 Chin. Phys. B 27 030601
[26]Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenb, T, Lemke N, Ludlow A, Jiang Y and Oates C W 2011 Nat. Photon. 5 425
[27]Lipphardt B, Grosche G, Sterr U, Tamm C, Weyers S and Schnatz H 2008 IEEE Trans. Instrum. Meas. 58 1258
[28]Abgrall M, Guéna J, Lours M, Santarelli G, Tobar M E, Bize S, Grop S, Dubois B, Fluhr C and Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1198
[29]Takamizawa A, Yanagimachi S, Tanabe T, Hagimoto K, Hirano I, Watabe K, Ikegami T and Hartnett J G 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1463
[30]Gao X, Klumperink E and Nauta B 2015 IEEE Custom Integrated Circuits Conference (CICC)
[31]Gao X, Eric G, Kpluperink A M, Geraedts F J and Nauta B 2009 IEEE Trans. Circuits Syst. II: Express Briefs 56 117
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 070601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 070601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 070601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 070601
[5] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 070601
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 070601
[7] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 070601
[8] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 070601
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 070601
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 070601
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 070601
[12] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 070601
[13] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 070601
[14] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 070601
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 070601
Viewed
Full text


Abstract