Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 099501    DOI: 10.1088/0256-307X/35/9/099501
Magnetic Field of a Compact Spherical Star under f(R,T) Gravity
Safiqul Islam1**, Shantanu Basu2
1Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi Allahabad-211019, India
2Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
Cite this article:   
Safiqul Islam, Shantanu Basu 2018 Chin. Phys. Lett. 35 099501
Download: PDF(624KB)   PDF(mobile)(613KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the interior solutions of distributions of magnetized fluid inside a sphere in $f(R,T)$ gravity. The magnetized sphere is embedded in an exterior Reissner–Nordström metric. We assume that all physical quantities are in static equilibrium. The perfect fluid matter is studied under a particular form of the Lagrangian density $f(R,T)$. The magnetic field profile in modified gravity is calculated. Observational data of neutron stars are used to plot suitable models of magnetized compact objects. We reveal the effect of $f(R,T)$ gravity on the magnetic field profile, with application to neutron stars, especially highly magnetized neutron stars found in x-ray pulsar systems. Finally, the effective potential $V_{\rm eff}$ and innermost stable circular orbits, arising out of the motion of a test particle of negligible mass influenced by attraction or repulsion from the massive center, are discussed.
Received: 18 May 2018      Published: 29 August 2018
PACS:  95.30.Sf (Relativity and gravitation)  
  04.50.Kd (Modified theories of gravity)  
  98.35.Eg (Electric and magnetic fields)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Safiqul Islam
Shantanu Basu
[1]Starobinsky A A 1980 Phys. Lett. B 91 99
[2]Smoot G F et al 1992 Astrophys. J. 396 L1
[3]Huterer D and Turner M S 1999 Phys. Rev. D 60 081301
[4]Riess A G et al 1999 Astron. J. 117 707
[5]Tegmark M et al 2006 Phys. Rev. D 74 123507
[6]Eisenstein D J et al 2005 Astrophys. J. 633 560
[7]Spergel D N et al 2007 Astrophys. J. Suppl. Ser. 170 377
[8]Kowalski M et al 2008 Astrophys. J. 686 749
[9]Nesseris S and Perivolaropoulos L 2005 Phys. Rev. D 72 123519
[10]Poplawski N J 2006 arXiv:gr-qc/0608031
[11]Harko T, Lobo F S N, Nojiri S and Odintsov S D 2011 Phys. Rev. D 84 024020
[12]Sharif M and Zubair M 2012 J. Phys. Soc. Jpn. 81 114005
[13]Turimov B V, Ahmedov B J and Hakimov A A 2017 Phys. Rev. D 96 104001
[14]Landau L D and Lifshitz E M 1998 The Classical Theory of Fields (Oxford: Butterworth-Heinemann)
[15]Barrientos O J et al 2014 Phys. Rev. D 90 028501
[16]Moraes P H R S 2014 Astrophys. Space Sci. 352 273
[17]Moraes P H R S 2015 Eur. Phys. J. C 75 168
[18]Das A, Rahaman F, Guha B K and Ray S 2016 Eur. Phys. J. C 76 654
[19]Hakimov A, Abdujabbarov A and Ahmedov B 2013 Phys. Rev. D 88 024008
[20]Ahmedov B J and Fattoyev F J 2008 Phys. Rev. D 78 047501
[21]Rezzolla L, Ahmedov B J and Miller J C 2001 Mon. Not. R. Astron. Soc. 322 723
[22]Ginzburg V L and Ozernoy L M 1964 Zh. Eksp. Teor. Fiz. 47 1030
[23]Anderson J L and Cohen J M 1970 Astrophys. Space Sci. 9 146
[24]Petterson J A 1974 Phys. Rev. D 10 3166
[25]Gupta A, Mishra A, Mishra H and Prasanna A R 1998 Class. Quantum Grav. 15 3131
[26]Prasanna A R and Gupta A 1997 Nuovo Cimento B 112 1089
[27]Lobo F S N, Harko T and Kovács Z 2010 arXiv:1001.3517v1
[28]Abdujabbarov A, Ahmedov B and Ahmedov B B 2011 Phys. Rev. D 84 044044
[29]Hakimov A, Turimov B, Abdujabbarov A and Ahmedov B 2010 Mod. Phys. Lett. A 25 3115
[30]Abdujabbarov A, Ahmedov B and Hakimov A 2011 Phys. Rev. D 83 044053
[31]Enolski V, Hartmann B, Kagramanova V, Kunz J, Lämmerzahl C and Sirimachan P 2012 J. Math. Phys. (N. Y.) 53 012504
[32]Enolski V et al 2011 Phys. Rev. D 84 084011
[33]Arfken G B and Weber H J 2001 Math. Methods For Physicists (San Diego: Academic Press) 5th edn
[34]Deb R, Paul B C and Tikekar R 2012 Pramana 79 211
[35]Lattimer J 2010
[36]Sharma R, Mukherjee S, Dey M and Dey J 2002 Mod. Phys. Lett. A 17 827
[37]Sharma R and Maharaj S D 2007 Mon. Not. R. Astron. Soc. 375 1265
[38]Bic̆ák J and Janis̆ V 1985 Mon. Not. R. Astron. Soc. 212 899
[39]Karas V and Vokroulflicky D 1992 Gen. Relativ. Gravit. 24 729
[40]Kopác̆ek O and Karas V 2014 Astrophys. J. 787 117
[41]Li D and Wu X 2018 arXiv:1803.02119v1
[42]Karas V et al 2014 Acta Polytechnica 54 398
[43]Braithwaite J 2009 Mon. Not. R. Astron. Soc. 397 763
[44]Pethick C J and Sahrling M 1995 Astrophys. J. 453 L29
[45]Dvornikov M 2016 Nucl. Phys. B 913 79
[46]Dvornikov M 2017 Int. J. Mod. Phys. D 26 1750184
Related articles from Frontiers Journals
[1] Chang-Qing Liu, Chi-Kun Ding, Ji-Liang Jing. Effects of Homogeneous Plasma on Strong Gravitational Lensing of Kerr Black Holes[J]. Chin. Phys. Lett., 2017, 34(9): 099501
[2] Zhen-Zhen Jing, De-Hua Wen. A New Solution in Understanding Massive White Dwarfs[J]. Chin. Phys. Lett., 2016, 33(05): 099501
[3] LU Jun-Li. Relation of Oscillation Frequency to the Equation of State of Relativistic Stars[J]. Chin. Phys. Lett., 2014, 31(11): 099501
[4] HE Guan-Sheng, LIN Wen-Bin. The Exact Harmonic Metric for a Moving Reissner–Nordström Black Hole[J]. Chin. Phys. Lett., 2014, 31(09): 099501
[5] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 099501
[6] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 099501
[7] ZHANG Tao, WU Pu-Xun, YU Hong-Wei, ** . Gödel-Type Universes in f(R) Gravity with an Arbitrary Coupling between Matter and Geometry[J]. Chin. Phys. Lett., 2011, 28(12): 099501
[8] AO Xi-Chen**, LI Xin-Zhou, XI Ping . Cosmological Dynamics of de Sitter Gravity[J]. Chin. Phys. Lett., 2011, 28(4): 099501
[9] WEN De-Hua. Equation of State in the σ-ω-ρ Model Supported by the Observational Data of 4U 1608-52 Neutron Star[J]. Chin. Phys. Lett., 2010, 27(1): 099501
[10] Mahamat Saleh, Bouetou Bouetou Thomas, , Timoleon Crepin Kofane,. Quasi-Normal Modes of Gravitational Perturbation around a Reissner-Nordström Black Hole Surrounded by Quintessence[J]. Chin. Phys. Lett., 2009, 26(10): 099501
[11] M. Khayrul Hasan, M. Hossain Ali. Dispersion Relations for Isothermal Plasma around the Horizon of Reissner-Nordström-de Sitter Black Hole[J]. Chin. Phys. Lett., 2009, 26(10): 099501
[12] LUO Xin-Lian. Neutrino Lensing[J]. Chin. Phys. Lett., 2009, 26(10): 099501
[13] Shri Ram, M. K. Verma, Mohd. Zeyauddin. Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation[J]. Chin. Phys. Lett., 2009, 26(8): 099501
[14] YI Ying, LI Fang-Yu. Alternative Solutions to Bianchi Type-I Cosmology[J]. Chin. Phys. Lett., 2007, 24(8): 099501
[15] WEN De-Hua, CHEN Wei, LU Yi-Gang, LIU Liang-Gang. Properties of Neutron Stars Rotating at Kepler Frequency with Uniform Strong Magnetic Field[J]. Chin. Phys. Lett., 2007, 24(3): 099501
Full text