Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 098501    DOI: 10.1088/0256-307X/35/9/098501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates
Qing-feng Wu, Sheng Cao**, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang
National Institute of LED on Si Substrate, Nanchang University, Nanchang 330096
Cite this article:   
Qing-feng Wu, Sheng Cao, Chun-lan Mo et al  2018 Chin. Phys. Lett. 35 098501
Download: PDF(1236KB)   PDF(mobile)(1229KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Effect of hydrogen (H$_2$) treatment during the GaN barrier growth on the electroluminescence performance of green InGaN/GaN single-quantum-well light-emitting diodes (LEDs) grown on Si substrates is experimentally investigated. We prepare two LED samples with different carrier gas compositions during the growth of GaN barrier. In the H$_2$ free LED, the GaN barrier is grown in full nitrogen (N$_2$) atmosphere. For the other H$_2$ treated LED, a mixture of N$_2$ and H$_2$ was used as the carrier gas. It is observed that V-shaped pits decrease in size after H$_2$ treatment by means of the scanning electron microscope. Due to the fact that the p-n junction interface would be closer to the p-GaN as a result of smaller V-shaped pits, the tunneling barrier for holes to inject into the InGaN quantum well would become thicker after H$_2$ treatment. Hence, the external quantum efficiency of the H$_2$ treated LED is lower compared to the H$_2$ free LED. However, LEDs would exhibit a better leakage behavior after H$_2$ treatment during the GaN barrier growth because of more effective blocking of the threading dislocations as a result of the H$_2$ etching at V-shaped pits.
Received: 21 May 2018      Published: 29 August 2018
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  78.60.Fi (Electroluminescence)  
  78.67.De (Quantum wells)  
Fund: Supported by the National Key R&D Program of China under Grant Nos 2016YFB0400600 and 2016YFB0400601, the State Key Program of the National Natural Science Foundation of China under Grant No 61334001, the National Natural Science Foundation of China under Grant Nos 21405076, 11674147, 61604066, 51602141 and 11604137, the Key Technology Research and Development Program of Jiangxi Province under Grant Nos 20165ABC28007 and 20171BBE50052, and Jiangxi Province Postdoctoral Science Foundation Funded Project under Grant No 2015KY32.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/098501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/098501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing-feng Wu
Sheng Cao
Chun-lan Mo
Jian-li Zhang
Xiao-lan Wang
Zhi-jue Quan
Chang-da Zheng
Xiao-ming Wu
Shuan Pan
Guang-xu Wang
Jie Ding
Long-quan Xu
Jun-lin Liu
Feng-yi Jiang
[1]Suihkonen S et al 2007 J. Cryst. Growth 300 324
[2]Zhou X R et al 2017 Nanoscale Res. Lett. 12 354
[3]Czernecki R et al 2015 J. Cryst. Growth 414 38
[4]Suihkonen S et al 2007 J. Cryst. Growth 298 740
[5]Le L C et al 2012 Appl. Phys. Lett. 101 252110
[6]Quan Z J et al 2015 J. Appl. Phys. 118 193102
[7]Quan Z J et al 2014 J. Appl. Phys. 116 183107
[8]Mo C L et al 2005 J. Cryst. Growth 285 312
[9]Liu J L et al 2011 Appl. Phys. Lett. 99 111112
[10]Wang G X et al 2015 Semicond. Sci. Technol. 30 015018
[11]Harbers G et al 2007 J. Disp. Technol. 3 160
[12]Ren P et al 2016 J. Phys. D 49 175101
[13]Moon Y T et al 2000 J. Vac. Sci. Technol. B 18 2631
[14]Shen Y C et al 2007 Appl. Phys. Lett. 91 141101
[15]Kim M H et al 2007 Appl. Phys. Lett. 91 183507
[16]Mártil I et al 1997 J. Appl. Phys. 81 2442
[17]Jia C et al 2013 Opt. Express 21 8444
[18]Niu N H et al 2007 Solid-State Electron. 51 860
[19]Leyer M et al 2008 J. Cryst. Growth 310 4913
[20]Qi W J et al 2017 J. Appl. Phys. 122 084504
[21]Czernecki R et al 2014 J. Cryst. Growth 402 330
[22]Morishita Y et al 1995 Appl. Phys. Lett. 67 2500
[23]Zhang Y P et al 2017 Appl. Phys. Lett. 110 033506
[24]Chitnis A, Kumar A, Shatalov M, Adivarahan V, Lunev A, Yang J W, Simin G, Khan M A, Gaska R and Shur M 2000 Appl. Phys. Lett. 77 3800
[25]Cao X A, Stokes E B, Sandvik P M, Leboeuf S F et al 2002 IEEE Electron Device Lett. 23 535
[26]Shan Q F, Meyaard D S, Dai Q, Cho J, Schubert E F, Son J K and Sone C 2011 Appl. Phys. Lett. 99 253506
[27]Kim J, Kim J, Tak Y, Chae S, Kim J Y and Park Y 2013 IEEE Electron Device Lett. 34 1409
[28]Han S H , Lee D Y , Shim H W , Lee J W, Kim D J , Yoon S, Kim Y S and Kim S T 2013 Appl. Phys. Lett. 102 251123
[29]Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402
[30]Yeh Y H, Chen K M, Wu Y H, Hsu Y C, Yu T Y and Lee W I 2011 J. Cryst. Growth 333 16
[31]Yeh Y H, Chen K M, Wu Y H, Hsu Y C and Lee W I 2011 J. Cryst. Growth 314 9
[32]Ren X C, Riley J R, Koleske D D and Lauhon L J 2015 Appl. Phys. Lett. 107 022107
Related articles from Frontiers Journals
[1] Xinhuang Lin, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan, and Qing Wan. Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding[J]. Chin. Phys. Lett., 2022, 39(6): 098501
[2] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 098501
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 098501
[4] Jin-Lei Lu, Chen Yue, Xuan-Zhang Li, Wen-Xin Wang, Hai-Qiang Jia, Hong Chen, Lu Wang. Numerical and Experimental Study on the Device Geometry Dependence of Performance of Heterjunction Phototransistors[J]. Chin. Phys. Lett., 2019, 36(10): 098501
[5] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 098501
[6] Guang-Yue Shen, Tian-Xiang Zheng, Bing-Cheng Du, Yang Lv, E Wu, Zhao-Hui Li, Guang Wu. Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode[J]. Chin. Phys. Lett., 2018, 35(11): 098501
[7] Xiang Zhang, Yu-Dong Li, Lin Wen, Dong Zhou, Jie Feng, Lin-Dong Ma, Tian-Hui Wang, Yu-Long Cai, Zhi-Ming Wang, Qi Guo. Radiation Effects Due to 3MeV Proton Irradiations on Back-Side Illuminated CMOS Image Sensors[J]. Chin. Phys. Lett., 2018, 35(7): 098501
[8] Yin Tang, Qing Cai, Lian-Hong Yang, Ke-Xiu Dong, Dun-Jun Chen, Hai Lu, Rong Zhang, You-Dou Zheng. High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chin. Phys. Lett., 2017, 34(1): 098501
[9] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 098501
[10] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 098501
[11] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 098501
[12] YUAN Li, WU Can, ZHANG Zhao-Hua, REN Tian-Ling. A Silicon-Based Positive-Intrinsic-Negative Photodetector Double Linear Array on a Thick Intrinsic Epitaxial Layer[J]. Chin. Phys. Lett., 2014, 31(05): 098501
[13] LI Lian-Bi, CHEN Zhi-Ming, REN Zhan-Qiang, GAO Zhan-Jun. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode[J]. Chin. Phys. Lett., 2013, 30(9): 098501
[14] LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le, JIANG Hao. Large Active Area AlGaN Solar-Blind Schottky Avalanche Photodiodes with High Multiplication Gain[J]. Chin. Phys. Lett., 2013, 30(3): 098501
[15] YUE Ai-Wen, WANG Ren-Fan, XIONG Bing, SHI Jing. Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector[J]. Chin. Phys. Lett., 2013, 30(3): 098501
Viewed
Full text


Abstract