Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 097401    DOI: 10.1088/0256-307X/35/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl
Shuai Zhang1**, Mo-Ran Gao1,2, Huan-Yan Fu1,3, Xin-Min Wang1,2, Zhi-An Ren1,2,4, Gen-Fu Chen1,2,4**
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3School of Physics and Electronics, Shandong Normal University, Jinan 250014
4Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
Shuai Zhang, Mo-Ran Gao, Huan-Yan Fu et al  2018 Chin. Phys. Lett. 35 097401
Download: PDF(2296KB)   PDF(mobile)(2299KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Devices of electric double-layer transistors (EDLTs) with ionic liquid have been employed as an effective way to dope carriers over a wide range. However, the induced electronic states can hardly survive in the materials after releasing the gate voltage $V_{\rm G}$ at temperatures higher than the melting point of the selected ionic liquid. Here we show that a permanent superconductivity with transition temperature $T_{\rm c}$ of 24 and 15 K is realized in single crystals and polycrystalline samples of HfNCl and ZrNCl upon applying proper $V_{\rm G}$'s at different temperatures. Reversible change between insulating and superconducting states can be obtained by applying positive and negative $V_{\rm G}$ at low temperature such as 220 K, whereas $V_{\rm G}$'s applied at 250 K induce the irreversible superconducting transition. The upper critical field $H_{\rm c2}$ of the superconducting states obtained at different gating temperatures shows similar temperature dependence. We propose a reasonable scenario that partial vacancy of Cl ions could be caused by applying proper $V_{\rm G}$'s at slightly higher processing temperatures, which consequently results in a permanent electron doping in the system. Such a technique shows great potential to systematically tune the bulk electronic state in the similar two-dimensional systems.
Received: 25 August 2018      Published: 29 August 2018
PACS:  74.25.-q (Properties of superconductors)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  74.25.fc (Electric and thermal conductivity)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11704403, the National Key Research Program of China under Grant No 2016YFA0401000 and 2016YFA0300604, and the Strategic Priority Research Program (B) of Chinese Academy of Sciences under Grant No XDB07020100.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/097401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/097401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai Zhang
Mo-Ran Gao
Huan-Yan Fu
Xin-Min Wang
Zhi-An Ren
Gen-Fu Chen
[1]Yuan H T, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M and Iwasa Y 2009 Adv. Funct. Mater. 19 1046
[2]Leng X, Pereiro J, Strle J, Dubuis G, Bollinger A T, Gozar A, Wu J, Litombe N, Panagopoulos C, Pavuna D and Božović I 2017 npj Quantum Mater. 2 35
[3]Yuan H T, Bahramy M S, Morimoto K, Wu S F, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N and Iwasa Y 2013 Nat. Phys. 9 563
[4]Zhang Z C, Feng X, Guo M H, Li K, Zhang J S, Ou Y B, Feng Y, Wang L L, Chen X, He K, Ma X C, Xue Q and Wang Y Y 2014 Nat. Commun. 5 4915
[5]Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y and Kawasaki M 2008 Nat. Mater. 7 855
[6]Ye J T, Inoue S, Kobayashi K, Kasahara Y, Yuan H T, Shimotani H and Iwasa Y 2010 Nat. Mater. 9 125
[7]Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
[8]Saito Y, Nojima T and Iwasa Y 2018 Nat. Commun. 9 778
[9]Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M and Iwasa Y 2014 J. Phys. Soc. Jpn. 83 032001
[10]Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. Lett. 116 077002
[11]Li L J, O'Farrell E C T, Loh K P, Eda G, Ozyilmaz B and Castro Neto A H 2016 Nature 529 185
[12]Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y and Yu P 2017 Nature 546 124
[13]Lu J M, Zheliuk O, Chen Q H, Leermakers I, Hussey N E, Zeitler U and Ye J T 2018 Proc. Natl. Acad. Sci. USA 115 3551
[14]Zhang S, Tanaka M and Yamanaka S 2012 Phys. Rev. B 86 024516
[15]Yamanaka S, Hotehama K and Kawaji H 1998 Nature 392 580
[16]Ye G J, Ying J J, Yan Y J, Luo X G, Cheng P, Xiang Z J, Wang A F and Chen X H 2012 Phys. Rev. B 86 134501
[17]Zhang S, Tanaka M, Zhu H and Yamanaka S 2013 Supercond. Sci. Technol. 26 085015
[18]Zhang S, Tanaka M, Onimaru T, Takabatake T, Isikawa Y and Yamanaka S 2013 Supercond. Sci. Technol. 26 045017
[19]Takano T, Kishiume T, Taguchi Y and Iwasa Y 2008 Phys. Rev. Lett. 100 247005
[20]Taguchi Y, Kitora A and Iwasa Y 2006 Phys. Rev. Lett. 97 107001
[21]Yuan H T, Liu H W, Shimotani H, Guo H, Chen M W, Xue Q K and Iwasa Y 2011 Nano Lett. 11 2601
[22]Cui Y, Zhang G H, Li H B, Lin H, Zhu X Y, Wen H H, Wang G G, Sun J Z, Ma M W, Li Y, Gong D L, Xie T, Gu Y H, Li S L, Luo H Q, Yu P and Yu W Q 2018 Sci. Bull. 63 11
[23]Sato T, Masuda G and Takagi K 2004 Electrochim. Acta 49 3603
[24]Zhu L and Yamanaka S 2003 Chem. Mater. 15 1897
[25]Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G and Parkin S S P 2013 Science 339 1402
[26]Zhou Y and Ramanathan S 2012 J. Appl. Phys. 111 084508
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 097401
[2] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 097401
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 097401
[4] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 097401
[5] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 097401
[6] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 097401
[7] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 097401
[8] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 097401
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 097401
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 097401
[11] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 097401
[12] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 097401
[13] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 097401
[14] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 097401
[15] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 097401
Viewed
Full text


Abstract