Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 074204    DOI: 10.1088/0256-307X/35/7/074204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Field Tunable Polaritonic Band Gaps in Fibonacci Piezoelectric Superlattices
Zheng-Hua Tang1, Zheng-Sheng Jiang2, Chun-Zhi Jiang1**, Da-Jun Lei1, Jian-Quan Huang1, Feng Qiu1, Hai-Ming Deng1, Min Yao1, Xiao-Yi Huang1
1Xiangnan University-Gospell Joint laboratory of Microwave Communication Technology, college of Electronic Information and Electrical Engineering, Xiangnan University, Chenzhou 423000
2National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
Zheng-Hua Tang, Zheng-Sheng Jiang, Chun-Zhi Jiang et al  2018 Chin. Phys. Lett. 35 074204
Download: PDF(724KB)   PDF(mobile)(719KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Fibonacci piezoelectric superlattices (FPSs) with an external dc electric field is presented, in which the dc electric field can tune the bandwidth of polaritonic band gaps (PBGs) continuously and reversibly via the electro-optic effect. The absolute bandwidths of two major PBGs of the FPSs around $\omega=7.5$ GHz and $\omega=12.5$ GHz can be broadened from 0.022 GHz to 0.74 GHz and from 0.02 GHz to 0.82 GHz with the dc electric field increasing from 0 to $1.342\times10^{6}$ V/m, respectively. The corresponding relative bandwidths of the two major PBGs are widened from $0.28\%$ to $9.2\%$ and from $0.18\%$ to $6.35\%$, respectively. The general mechanism for the bandwidth tunability is that the coupling strength between the lattice vibration and electromagnetic waves is capable of being altered by the dc electric field via the electro-optic effect. Thus the properties can be applied to construct microwave switchings or field tunable bulk acoustic filters.
Received: 23 April 2018      Published: 24 June 2018
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11705155, the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, the Projects of Hunan Provincial Education Office under Grant Nos 16B243, 17B244 and 16A199, and the Chenzhou City Science and Technology Project under Grant Nos CZ2014042 and jsyf2017005.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/074204       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/074204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zheng-Hua Tang
Zheng-Sheng Jiang
Chun-Zhi Jiang
Da-Jun Lei
Jian-Quan Huang
Feng Qiu
Hai-Ming Deng
Min Yao
Xiao-Yi Huang
[1]Lee Y S 2009 Principles Terahertz Sci. Technol. (Berlin: Springer) chap 5 p 211
[2]Lu Y Q, Zhu Y Y, Chen Y F, Zhu S N, Ming N B and Feng Y J 1999 Science 284 1822
[3]Zhang W Y, Liu Z X and Wang Z L 2005 Phys. Rev. B 71 195114
[4]Liu Z X and Zhang W Y 2005 Phys. Rev. B 72 134304
[5]Liu Z X and Zhang W Y 2007 Phys. Rev. B 75 064207
[6]Hu X K, Ming Y, Zhang X J, Lu Y Q and Zhu Y Y 2012 Appl. Phys. Lett. 101 151109
[7]Yudistira D, Boes A, Djafari-Rouhani B, Pennec Y, Yeo L Y, Mitchell A and Friend J R 2014 Phys. Rev. Lett. 113 215503
[8]Ng S S, Hassan Z and Abu H 2008 Chin. Phys. Lett. 25 4378
[9]Devarapu G C R and Foteinopoulou S 2017 Phys. Rev. Appl. 7 034001
[10]Sakamoto H, Takeuchi E, Yoshida K, Morita K, Ma B and Ishitani Y 2018 J. Phys. D 51 015105
[11]Karakachian H and Kazan M 2017 J. Appl. Phys. 122 045103
[12]Feng K J, Streyer W, Islam S M, Verma J, Jena D, Wasserman D and Hoffman A 2015 Appl. Phys. Lett. 107 081108
[13]Müler K, Fischer K A, Rundquist A, Dory C, Lagoudakis K G, Sarmiento T, Kelaita Y A, Borish V and Vučković 2015 Phys. Rev. X 5 031006
[14]Ikegaya Y, Sakaibara H, Minami Y, Katayama I and Takeda J 2015 Appl. Phys. Lett. 107 062901
[15]Chen K F, Santhanam P and Fan S H 2015 Appl. Phys. Lett. 107 091106
[16]Kojima S and Mori T 2016 Ferroelectrics 500 183
[17]Ordonez-Miranda J, Tranchant L, Joulain K, Ezzahri Y, Drevillon J and Volz S 2016 Phys. Rev. B 93 035428
[18]Janipour M, Misirlioglu I B and Sendur K 2016 Sci. Rep. 6 34071
[19]Qian X S, Wu H, Wang Q, Yu Z Y, Xu F, Lu Y Q and Chen Y F 2011 J. Appl. Phys. 109 053111
[20]Ramanujama N R and Joseph W K S 2017 Opt. Commun. 386 65
[21]Bichurin M I and Petrov V M 2003 Phys. Rev. B 68 054402
[22]Kang T D, Xiao B, Avrutin V, Özgür Ü, Morkoc H, Park J W, Lee H S, Wang X Y and Smith D J 2008 J. Appl. Phys. 104 093103
[23]George J P, Smet P F, Botterman J, Bliznuk V, Woestenborghs W, Thourhout D V, Neyts K and Beeckman J 2015 ACS Appl. Mater. Interfaces 7 13350
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 074204
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 074204
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 074204
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 074204
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 074204
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 074204
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 074204
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 074204
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 074204
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 074204
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 074204
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 074204
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 074204
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 074204
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 074204
Viewed
Full text


Abstract