Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 084207    DOI: 10.1088/0256-307X/34/8/084207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Two-Dimensional Talbot Effect with Atomic Density Gratings
Chen Li1, Tian-Wei Zhou1, Jing-Gang Xiang2, Yue-Yang Zhai3**, Xu-Guang Yue4, Shi-Feng Yang1, Wei Xiong1, Xu-Zong Chen1**
1School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
2School of Physics, Peking University, Beijing 100871
3Science and Technology on Inertial Laboratory, Beihang University, Beijing 100191
4State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
Download: PDF(836KB)   PDF(mobile)(836KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.
Received: 22 March 2017      Published: 22 July 2017
PACS:  42.79.Dj (Gratings)  
  42.25.Hz (Interference)  
  37.10.Jk (Atoms in optical lattices)  
Fund: Supported by the State Key Development Program for Basic Research of China under Grant No 2016YFA0301501, and the National Natural Science Foundation of China under Grant Nos 11504328, 61475007, 11334001 and 91336103.
Cite this article:   
Chen Li, Tian-Wei Zhou, Jing-Gang Xiang et al  2017 Chin. Phys. Lett. 34 084207
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/084207       OR      http://cpl.iphy.ac.cn/Y2017/V34/I8/084207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chen Li
Tian-Wei Zhou
Jing-Gang Xiang
Yue-Yang Zhai
Xu-Guang Yue
Shi-Feng Yang
Wei Xiong
Xu-Zong Chen
[1]Talbot H F 1964 Philos. Mag. 9 401
[2]Case W B, Tomandl M, Deachapunya S and Arndt M 2009 Opt. Express 17 20966
[3]Friesch O M, Marzoli I and Schleich W P 2000 New J. Phys. 2 4
[4]Lu Y Q, Li P L and Zheng J J 2010 Chin. Phys. Lett. 27 094201
[5]Rayleigh L 1881 Philos. Mag. 11 196
[6]Berry M V and Klein S 1996 J. Mod. Opt. 43 2139
[7]Deng L, Hagley E W, Denschlag J, Simsarian J E, Edwards M, Clark C W, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 5407
[8]Chapman M S, Ekstrom C R, Hammond T D, Schmiedmayer J, Tannian B E, Wehinger S and Pritchard D E 1995 Phys. Rev. A 51 R14
[9]Abfalterer R, Keller C, Bernet S, Oberthaler M K, Schmiedmayer J and Zeilinger A 1997 Phys. Rev. A 56 R4365
[10]Nowak S, Kurtsiefer C, Pfau T and David C 1997 Opt. Lett. 22 1430
[11]Song X B, Wang H B, Xiong J, Wang K G, Zhang X D, Luo K H and Wu L A 2011 Phys. Rev. Lett. 107 033902
[12]Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W and Chen X Z 2017 Phys. Rev. A 95 033821
[13]Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[14]Davis K B, Mewes M O, Andrews M R, van Druten N J Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[15]Eckel S, Lee J G, Jendrzejewski F, Murray N, Clark C W, Lobb C J, Phillips W D, Edwards M and Campbell G K 2014 Nature 506 200
[16]Bloch I, Dalibard J and Nascimbene S 2012 Nat. Phys. 8 267
[17]Liu X X, Zhou X J, Xiong W, Vogt T and Chen X Z 2011 Phys. Rev. A 83 063402
[18]Zhai Y Y, Yue X G, Wu Y J, Chen X Z, Zhang P and Zhou X J 2013 Phys. Rev. A 87 063638
[19]Wu S J, Wang Y J, Diot Q and Prentiss M 2005 Phys. Rev. A 71 043602
Related articles from Frontiers Journals
[1] Jin Kang, Bao-Le Lu, Xin-Yuan Qi, Xiao-Qiang Feng, Hao-Wei Chen, Man Jiang, Yang Wang, Pan Fu, Jin-Tao Bai. An Efficient Single-Frequency Yb-Doped All-Fiber MOPA Laser at 1064.3nm[J]. Chin. Phys. Lett., 2016, 33(12): 084207
[2] Xiao-Qiang Zhang, Rui-Shan Chen, Yong Zhou, Hai Ming, An-Ting Wang. Convention of Optical Vortices in Two-Helix Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2016, 33(08): 084207
[3] Yong Liu, Chen Wang, Anastasia Nemkova, Shi-Ming Hu, Zhi-Yong Li, Yu-De Yu. Structured Illumination Chip Based on Integrated Optics[J]. Chin. Phys. Lett., 2016, 33(05): 084207
[4] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 µm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 084207
[5] LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan, CHEN Hao-Wei, REN Zhao-Yu, BAI Jin-Tao. Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter[J]. Chin. Phys. Lett., 2015, 32(4): 084207
[6] ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long, ZHANG Qiang-Qiang, YI Yong, ZENG Yong, ZHU Xiao-Li, FAN Quan-Ping, QIAN Feng, WEI Lai, WANG Hong-Bin, WU Wei-Dong, CAO Lei-Feng. Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam[J]. Chin. Phys. Lett., 2014, 31(12): 084207
[7] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 084207
[8] ZHAO Jian-Yi, CHEN Xin, ZHOU Ning, HUANG Xiao-Dong, CAO Ming-De, LIU Wen. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network[J]. Chin. Phys. Lett., 2014, 31(07): 084207
[9] YAO Bao-Yin, FENG Li-Shuang, WANG Xiao, LIU Wei-Fang, LIU Mei-Hua. Micrograting Displacement Sensor with Integrated Electrostatic Actuation[J]. Chin. Phys. Lett., 2014, 31(07): 084207
[10] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 084207
[11] CHEN Xin, ZHAO Jian-Yi, ZHOU Ning, HUANG Xiao-Dong, LIU Wen. Four-Channel 1.55-µm DFB Laser Array Monolithically Integrated with a 4×1 Multimode-Interference Combiner Based on Nanoimprint Lithography[J]. Chin. Phys. Lett., 2014, 31(04): 084207
[12] YAN Fang-Liang, ZHANG Jin-Chuan, YAO Dan-Yang, TAN Song, LIU Feng-Qi, WANG Li-Jun, WANG Zhan-Guo. Design and Fabrication of Six-Channel Complex-Coupled DFB Quantum Cascade Laser Arrays Based on a Sampled Grating[J]. Chin. Phys. Lett., 2014, 31(1): 084207
[13] CUI Wei, SI Jin-Hai, CHEN Tao, YAN Fei, CHEN Feng, HOU Xun. Suppression of the Thermal Effects in the Femtosecond Laser Processing of Fiber Bragg Gratings[J]. Chin. Phys. Lett., 2013, 30(10): 084207
[14] SHEN Ao, QIU Chen, HU Ting, XU Chao, JIANG Xiao-Qing, LI Yu-Bo, YANG Jian-Yi. An Eight-Channel 400 GHz-Spacing Etched Diffraction Grating Multi/Demultiplexer on a Nanophotonic Silicon-on-Insulator Platform[J]. Chin. Phys. Lett., 2013, 30(8): 084207
[15] ZUO Qiang, ZHAO Jian-Yi, CHEN Xin, WANG Zhi-Hao, SUN Tang-You, ZHOU Ning, ZHAO Yan-Li, XU Zhi-Mou, LIU Wen . A Multiple Phase-Shifted Distributed Feedback (DFB) Laser Fabricated by Nanoimprint Lithography[J]. Chin. Phys. Lett., 2013, 30(5): 084207
Viewed
Full text


Abstract