Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 084301    DOI: 10.1088/0256-307X/34/8/084301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Cavitation Bubble Collapse near a Curved Wall by the Multiple-Relaxation-Time Shan–Chen Lattice Boltzmann Model
Hong-Hui Xue1, Feng Shan1, Xia-Sheng Guo1, Juan Tu1, Dong Zhang1,2**
1Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093
2State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 100190
Cite this article:   
Hong-Hui Xue, Feng Shan, Xia-Sheng Guo et al  2017 Chin. Phys. Lett. 34 084301
Download: PDF(789KB)   PDF(mobile)(786KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan–Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young–Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.
Received: 18 April 2017      Published: 22 July 2017
PACS:  43.25.+y (Nonlinear acoustics)  
  43.80.+p (Bioacoustics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11674173, 81627802, 11474161, 11374155 and 11474001, and the Qing Lan Project.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/084301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/084301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Hui Xue
Feng Shan
Xia-Sheng Guo
Juan Tu
Dong Zhang
[1]Lauterborn W and Bolle H 1975 J. Fluid Mech. 72 391
[2]Miller M W, Miller D L and Brayman A A 1996 Ultrasound Med. Biol. 22 1131
[3]Carstensen E L, Gracewski S and Dalecki D 2000 Ultrasound Med. Biol. 26 1377
[4]Salgaonkar V A, Datta S, Holland C K and Mast T D 2009 J. Acoust. Soc. Am. 126 3071
[5]Yoshizawa S, Ikeda T, Ito A, Ota R, Takagi S and Matsumoto Y 2009 Med. Biol. Eng. Comput. 47 851
[6]Wu J, Pepe J and Rincón M 2006 Ultrasonics 44 e21
[7]Ohl C D, Arora M and Ikink R 2006 Biophys. J. 91 4285
[8]Ward M, Wu J and Chiu J F 1999 J. Acoust. Soc. Am. 105 2951
[9]Hauff P, Seemann S, Reszka R, Schultze-Mosgau M, Reinhardt M, Buzasi T, Plath T, Rosewicz S and Schirner M 2005 Radiology 236 572
[10]Wu J and Nyborg W L 2008 Adv. Drug. Deliver. Rev. 60 1103
[11]Kornfeld M and Suvarov L 1944 J. Appl. Phys. 15 495
[12]Benjamin T B and Ellis A T 1966 Philos. Trans. R. Soc. London. Ser. A 260 221
[13]Philipp A and Lauterborn W 1998 J. Fluid Mech. 361 75
[14]Plesset M S and Chapman R B 1971 J. Fluid Mech. 47 283
[15]Shan X and He X 1998 Phys. Rev. Lett. 80 65
[16]Shan X and Chen H 1993 Phys. Rev. E 47 1815
[17]Michael E, McCracken E and Abraham J 2005 Phys. Rev. E 71 036701
[18]Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301
[19]Shan X 2006 Phys. Rev. E 73 047701
[20]He X and Doolen G D 2002 J. Stat. Phys. 107 309
[21]Yuan P and Schaefer L 2006 Phys. Fluids 18 042101
[22]Wei Y K and Qian Y H 2012 Chin. Phys. Lett. 29 064705
[23]Huang H B, Krafczyk M and Lu X Y 2011 Phys. Rev. E 84 046710
[24]Gittens G J 1969 J. Colloid Interface Sci. 30 406
[25]Bouzidi M, Firdaouss M and Lallemand P 2001 Phys. Fluids 13 3452
Related articles from Frontiers Journals
[1] Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 084301
[2] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 084301
[3] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 084301
[4] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 084301
[5] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 084301
[6] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 084301
[7] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 084301
[8] Ming-Liang Li, Ming-Xi Deng, Wu-Jun Zhu, Guang-Jian Gao, Yan-Xun Xiang. Numerical Perspective of Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2016, 33(12): 084301
[9] Wei-Li Wang, Yu-Hao Wu, Xiao-Yu Lu, Bing-Bo Wei. A Videographic Study of Dynamic Phase Separation for Immiscible Solutions under Acoustic Levitation Condition[J]. Chin. Phys. Lett., 2016, 33(12): 084301
[10] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 084301
[11] Wu-Jun Zhu, Ming-Xi Deng, Yan-Xun Xiang, Fu-Zhen Xuan, Chang-Jun Liu. Second Harmonic Generation of Lamb Wave in Numerical Perspective[J]. Chin. Phys. Lett., 2016, 33(10): 084301
[12] Zhe-Fan Peng, Wei-Jun Lin, Shi-Lei Liu, Chang Su, Hai-Lan Zhang, Xiu-Ming Wang. Phase Relation of Harmonics in Nonlinear Focused Ultrasound[J]. Chin. Phys. Lett., 2016, 33(08): 084301
[13] Ting-Bo Fan, Juan Tu, Lin-Jiao Luo, Xia-Sheng Guo, Pin-Tong Huang, Dong Zhang. The Relationship of Cavitation to the Negative Acoustic Pressure Amplitude in Ultrasonic Therapy[J]. Chin. Phys. Lett., 2016, 33(08): 084301
[14] DENG Ming-Xi, GAO Guang-Jian, LI Ming-Liang. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2015, 32(12): 084301
[15] CAO Hui, HUANG Wan-Jun, QIAO Jia-Ting, WANG Yun-Peng, ZHAO Hai-Jun. Research on Vibration Mechanism of Plant Cell Membrane with Ultrasonic Irradiation[J]. Chin. Phys. Lett., 2015, 32(03): 084301
Viewed
Full text


Abstract