Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 084302    DOI: 10.1088/0256-307X/34/8/084302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids
Xun Wang1, Wei-Zhong Chen1**, Qi Wang1, Jin-Fu Liang2
1Key Laboratory of Modern Acoustics (Ministry of Education), Institute of Acoustics, Nanjing University, Nanjing 210093
2School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001
Cite this article:   
Xun Wang, Wei-Zhong Chen, Qi Wang et al  2017 Chin. Phys. Lett. 34 084302
Download: PDF(691KB)   PDF(mobile)(682KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.
Received: 12 May 2017      Published: 22 July 2017
PACS:  43.25.+y (Nonlinear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  47.55.dd (Bubble dynamics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11334005, 11574150 and 11564006.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/084302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/084302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xun Wang
Wei-Zhong Chen
Qi Wang
Jin-Fu Liang
[1]Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[2]Liang B, Guo X S, Tu J, Zhang D and Cheng J C 2010 Nat. Mater. 9 989
[3]Zhu X, Zou X, Liang B and Cheng J 2010 J. Appl. Phys. 108 124909
[4]Li X F, Ni X, Feng L, Lu M H, He C and Chen Y F 2011 Phys. Rev. Lett. 106 084301
[5]Yuan B, Liang B, Tao J C, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 043503
[6]Li R Q, Liang B, Li Y, Kan W W, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 263502
[7]Li Y, Tu J, Liang B, Guo X S, Zhang D and Cheng J C 2012 J. Appl. Phys. 112 064504
[8]Li Y, Liang B, Gu Z M, Zou X Y and Cheng J C 2013 Appl. Phys. Lett. 103 053505
[9]Chen S, Hao C, Wang C, Zhang Y and Lin S 2015 Solid State Commun. 206 38
[10]Zhu X, Ramezani H, Shi C, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042
[11]Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H and Zhu X F 2016 Nat. Commun. 7 13368
[12]Peng Y G, Shen Y X, Zhao D G and Zhu X F 2017 Appl. Phys. Lett. 110 173505
[13]Vanhille C and Campos-Pozuelo C 2015 Phys. Procedia 63 163
[14]Wang X, Chen W, Liang S, Zhao T and Liang J 2017 Phys. Rev. E 95 033118
[15]Son Y, Lim M, Khim J and Ashokkumar M 2012 Ultrason. Sonochem. 19 16
[16]Wei Z and Weavers L K 2016 Ultrason. Sonochem. 31 490
[17]Jiang L, Ge H, Liu F and Chen D 2017 Ultrason. Sonochem. 34 90
[18]Vanhille C and Campos-Pozuelo C 2012 Ultrason. Sonochem. 19 217
[19]Vanhille C 2016 Ultrason. Sonochem. 31 631
[20]Enflo B O and Hedberg C M 2006 Theory of Nonlinear Acoustics in Fluids (Dordrecht: Kluwer Academic Publishers) p 222
[21]Sutkar V S, Gogate P R and Csoka L 2010 Chem. Eng. J. 158 290
[22]Gogate P R, Shaha S and Csoka L 2014 Chem. Eng. J. 239 364
[23]Miao B Y and An Y 2015 Acta Phys. Sin. 64 204301 (in Chinese)
[24]Vanhille C and Campos-Pozuelo C 2009 Ultrason. Sonochem. 16 669
[25]An Y 2012 Phys. Rev. E 85 016305
[26]Sastre M T T and Vanhille C 2017 Ultrason. Sonochem. 34 881
[27]Liang J F, Chen W Z, Shao W H, Zhou C, Du L F and Jin L F 2013 Jpn. J. Appl. Phys. 52 126601
[28]Liang J F, Chen W Z, Shao W H and Qi S B 2012 Chin. Phys. Lett. 29 074701
[29]Liang J F, Wang X, Yang J and Gong L 2017 Ultrasonics 75 58
[30]Vanhille C and Campos-Pozuelo C 2013 Ultrason. Sonochem. 20 963
[31]Cairós C and Mettin R 2017 Phys. Rev. Lett. 118 064301
[32]Sarno D, Hodnett M, Wang L and Zeqiri B 2017 Ultrason. Sonochem. 34 354
[33]Miao B Y and An Y 2017 Chin. Phys. Lett. 34 034302
[34]Gudra T and Opielinski K J 2004 Ultrasonics 42 621
[35]Jamshidi R, Pohl B, Peuker U A and Brenner G 2012 Chem. Eng. J. 189 364
Related articles from Frontiers Journals
[1] Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 084302
[2] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 084302
[3] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 084302
[4] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 084302
[5] Hong-Hui Xue, Feng Shan, Xia-Sheng Guo, Juan Tu, Dong Zhang. Cavitation Bubble Collapse near a Curved Wall by the Multiple-Relaxation-Time Shan–Chen Lattice Boltzmann Model[J]. Chin. Phys. Lett., 2017, 34(8): 084302
[6] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 084302
[7] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 084302
[8] Ming-Liang Li, Ming-Xi Deng, Wu-Jun Zhu, Guang-Jian Gao, Yan-Xun Xiang. Numerical Perspective of Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2016, 33(12): 084302
[9] Wei-Li Wang, Yu-Hao Wu, Xiao-Yu Lu, Bing-Bo Wei. A Videographic Study of Dynamic Phase Separation for Immiscible Solutions under Acoustic Levitation Condition[J]. Chin. Phys. Lett., 2016, 33(12): 084302
[10] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 084302
[11] Wu-Jun Zhu, Ming-Xi Deng, Yan-Xun Xiang, Fu-Zhen Xuan, Chang-Jun Liu. Second Harmonic Generation of Lamb Wave in Numerical Perspective[J]. Chin. Phys. Lett., 2016, 33(10): 084302
[12] Zhe-Fan Peng, Wei-Jun Lin, Shi-Lei Liu, Chang Su, Hai-Lan Zhang, Xiu-Ming Wang. Phase Relation of Harmonics in Nonlinear Focused Ultrasound[J]. Chin. Phys. Lett., 2016, 33(08): 084302
[13] Ting-Bo Fan, Juan Tu, Lin-Jiao Luo, Xia-Sheng Guo, Pin-Tong Huang, Dong Zhang. The Relationship of Cavitation to the Negative Acoustic Pressure Amplitude in Ultrasonic Therapy[J]. Chin. Phys. Lett., 2016, 33(08): 084302
[14] DENG Ming-Xi, GAO Guang-Jian, LI Ming-Liang. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2015, 32(12): 084302
[15] CAO Hui, HUANG Wan-Jun, QIAO Jia-Ting, WANG Yun-Peng, ZHAO Hai-Jun. Research on Vibration Mechanism of Plant Cell Membrane with Ultrasonic Irradiation[J]. Chin. Phys. Lett., 2015, 32(03): 084302
Viewed
Full text


Abstract