Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 067601    DOI: 10.1088/0256-307X/32/6/067601
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Field Measurement with Heisenberg Limit Based on Solid Spin NOON State
ZHOU Lei-Ming, DONG Yang, SUN Fang-Wen**
Key Laboratory of Quantum Information, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHOU Lei-Ming, DONG Yang, SUN Fang-Wen 2015 Chin. Phys. Lett. 32 067601
Download: PDF(586KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The maximum entangled number state (NOON state) can improve the sensitivity of physical quantity measurement to the Heisenberg limit 1/N. In this work, the magnetic field measurement based on the individual solid spin NOON state is investigated. Based on the tunable effective coupling coefficient, we propose a generation scheme of the three-spin NOON state, i.e, the Greenberger–Horne–Zeilinger (GHZ) state, and discussed the measurement resolution reduction due to decoherence. It is unnecessary to entangle spins as many as possible when decoherence exists. In practice, defect spins in diamond and 31P donors with long coherence time can be applied with current techniques in the nano-scaled high resolution magnetic measurement.
Received: 26 January 2015      Published: 30 June 2015
PACS:  76.30.Mi (Color centers and other defects)  
  71.70.Jp (Nuclear states and interactions)  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/067601       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/067601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Lei-Ming
DONG Yang
SUN Fang-Wen
[1] S?rman E, Son N T, Chen W M, Kordina O, Hallin C and Janzén E 2000 Phys. Rev. B 61 2613
[2] Hepp C, Müller T, Waselowski V, Becker J N, Pingault B, Sternschulte H, Steinmüller-Nethl D, Gali A, Maze J R, Atatüre M and Becher C 2014 Phys. Rev. Lett. 112 036405
[3] Gruber A, Dr?benstedt A, Tietz C, Fleury L, Wrachtrup J and Borczyskowski C V 1997 Science 276 2012
[4] Cui J M, Chen X D, Fan L L, Gong Z J, Zou C W, Sun F W, Han Z F and Guo G C 2012 Chin. Phys. Lett. 29 036103
[5] Liu D Q, Chang Y C, Liu G Q and Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)
[6] Morton J J L, Tyryshkin A M, Brown R M, Shankar S, Lovett B W, Ardavan A, Schenkel T, Haller E E, Ager J W and Lyon S a 2008 Nature 455 1085
[7] Dolde F, Jakobi I, Naydenov B, Zhao N, Pezzagna S, Trautmann C, Meijer J, Neumann P, Jelezko F and Wrachtrup J 2013 Nat. Phys. 9 139
[8] Steger M, Saeedi K, Thewalt M L W, Morton J J L, Riemann H, Abrosimov N V, Becker P and Pohl H J 2012 Science 336 1280
[9] Neumann P, Kolesov R, Naydenov B, Beck J, Rempp F, Steiner M, Jacques V, Balasubramanian G, Markham M L, Twitchen D J, Pezzagna S, Meijer J, Twamley J, Jelezko F and Wrachtrup J 2010 Nat. Phys. 6 249
[10] Hong S, Grinolds M S, Pham L M, Le Sage D, Luan L, Walsworth R L and Yacoby A 2013 MRS Bull. 38 155
[11] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 270
[12] Chen X D, Sun F W, Zou C L, Cui J M, Zhou L M and Guo G C 2013 Europhys. Lett. 101 67003
[13] Afek I, Ambar O and Silberberg Y 2010 Science 328 879
[14] Sun F W, Liu B H, Gong Y X, Huang Y F, Ou Z Y and Guo G C 2008 Europhys. Lett. 82 24001
[15] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, H?nsel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[16] Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D and Morton J J L 2009 Science 324 1166
[17] Simmons S, Jones J A, Karlen S D, Ardavan A and Morton J J L 2010 Phys. Rev. A 82 022330
[18] Wang H, Mariantoni M, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Martinis J M and Cleland A N 2011 Phys. Rev. Lett. 106 060401
[19] Lee T W, Huver S D, Lee H, Kaplan L, McCracken S B, Min C, Uskov D B, Wildfeuer C F, Veronis G and Dowling J P 2009 Phys. Rev. A 80 063803
[20] Ohno K, Heremans F J, Bassett L C, Myers B A, Toyli D M, Jayich A C B, Palmstrom C J and Awschalom D D 2012 Appl. Phys. Lett. 101 082413
[21] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B and Cirac J I 1997 Phys. Rev. Lett. 79 3865
[22] Rittweger E, Han K Y, Irvine S E, Eggeling C and Hell S W 2009 Nat. Photon. 3 144
[23] Wildanger D, Maze J R and Hell S W 2011 Phys. Rev. Lett. 107 017601
[24] Cui J M, Sun F W, Chen X D, Gong Z J and Guo G C 2013 Phys. Rev. Lett. 110 153901
[25] Chen X, Zou C, Gong Z, Dong C, Guo G and Sun F 2015 Light: Sci. Appl. 4 e230
[26] Childress L, Gurudev Dutt M V, Taylor J M, Zibrov a S, Jelezko F, Wrachtrup J, Hemmer P R and Lukin M D 2006 Science 314 281
[27] Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 93 130501
[28] Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jacques V, Gaebel T, Jelezko F and Wrachtrup J 2008 Science 320 1326
[29] Chen X D, Dong C H, Sun F W, Zou C L, Cui J M, Han Z F and Guo G C 2011 Appl. Phys. Lett. 99 161903
[30] Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J and Wrachtrup J 2013 Nano Lett. 13 2738
Related articles from Frontiers Journals
[1] Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu, Yue Xu, Hui Yu, Fang Hong, Xiao-Hui Yu, Xin-Yu Pan, and Gang-Qin Liu. Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures[J]. Chin. Phys. Lett., 2022, 39(11): 067601
[2] Wen-Hao He, Ming-Ming Dong, Zhen-Zhong Hu, Qi-Han Zhang, Bo Yang, Ying Liu, Xiao-Long Fan, Guan-Xiang Du. High Resolution Microwave B-Field Imaging Using a Micrometer-Sized Diamond Sensor[J]. Chin. Phys. Lett., 2019, 36(12): 067601
[3] Jian Xing, Yan-Chun Chang, Ning Wang, Gang-Qin Liu, Xin-Yu Pan. Electron Spin Decoherence of Nitrogen-Vacancy Center Coupled to Multiple Spin Baths[J]. Chin. Phys. Lett., 2016, 33(10): 067601
[4] Pei Pei, He-Fei Huang, Yan-Qing Guo, He-Shan Song. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface[J]. Chin. Phys. Lett., 2016, 33(02): 067601
[5] Ismael Chiamenti, Francesca Bonfigli, Anderson S. L. Gomes, Rosa Maria Montereali, Larissa N. da Costa, Hypolito J. Kalinowski. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride[J]. Chin. Phys. Lett., 2014, 31(1): 067601
[6] ZHAO Yu-Jing, FANG Xi-Ming, ZHOU Fang, SONG Ke-Hui. Preparation of N-Qubit GHZ State with a Hybrid Quantum System Based on Nitrogen-Vacancy Centers[J]. Chin. Phys. Lett., 2013, 30(5): 067601
[7] TAO Kun, ZHANG Qi-Ren, LIU Ting-Yu, ZHANG Fei-Wu. Origin of the 420nm Absorption Band and Effect of Doping Fluorine in PbWO4 Crystals[J]. Chin. Phys. Lett., 2005, 22(1): 067601
[8] ZHANG Qi-Ren, LIU Ting-Yu, YAN Fei-Nan. V-F and V+K Aggregate Colour Centres: Origin of the Room-Temperature 350 nm Absorption Band in PbWO4[J]. Chin. Phys. Lett., 2004, 21(6): 067601
[9] ZHAO Quan-Zhong, QIU Jian-Rong, YANG Lü-Yun, JIANG Xiong-Wei, ZHAO Chong-Jun, ZHU Cong-Shan. Fabrication of Microstructures in LiF Crystals by a Femtosecond Laser[J]. Chin. Phys. Lett., 2003, 20(10): 067601
[10] ZHOU Qin-Ling, LIU Li-Ying, XU Lei, WANG Wen-Cheng, ZHU Cong-Shan, GAN Fu-Xi,. Near-Infrared Femtosecond Laser Induced Defect Formation in High Purity Silica Below the Optical Breakdown Threshold[J]. Chin. Phys. Lett., 2003, 20(10): 067601
[11] JIN Tongzheng, WANG Dazhi, HAN Shiying, SUI Yunxia, ZHAO Xiaoning, JIN Sizhao*. Investigation of Nanocrystalline SnO2 by Electron Spin Resonance[J]. Chin. Phys. Lett., 1992, 9(10): 067601
Viewed
Full text


Abstract