Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 122901    DOI: 10.1088/0256-307X/31/12/122901
NUCLEAR PHYSICS |
Ion Transportation Study for Thick Gas Electron Multipliers
WANG Bin-Long1, LIU Qian1**, LIU Hong-Bang1,2, ZHOU Xiao-Kang1, CHEN Shi1, GE Dong-Sheng5, HUANG Wen-Qian5, XIE Yi-Gang1,4, ZHENG Yang-Heng1, DONG Yang5, ZHANG Qiang5, JIAO Xin-Da5, WANG Jing5, LI Min5, CHANG Jie5
1School of Physics, University of Chinese Academy of Sciences, Beijing 100049
2Institute of Physics, Guangxi University, Nanning 530004
3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
4School of Physics and Technology, Wuhan University, Wuhan 430072
5Second Academy of China Aerospace Science and Industry Corporation, Beijing 100049
Cite this article:   
WANG Bin-Long, LIU Qian, LIU Hong-Bang et al  2014 Chin. Phys. Lett. 31 122901
Download: PDF(578KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ion back flow(IBF) is defined as the ions that are generated during multiplication in a thick-gas-electron-multiplier (THGEM) detector flow along the electric field. In order to suppress the IBF effect, we study ion transportation for THGEMs with various high voltages and geometrical parameters. By measuring the currents of all the electrodes of the THGEMs, the effective gain and ion back flow ratio are calculated. The measurement and simulation results reveal that with a staggered triple THGEM configuration, ion back flow can be suppressed to 1% with a proper working high voltage. The gain of the staggered configuration is less than that of the aligned configuration by 5% under the same high voltage condition. The design and the results are presented.
Published: 12 January 2015
PACS:  29.40.Cs (Gas-filled counters: ionization chambers, proportional, and avalanche counters)  
  95.55.Ka (X- and γ-ray telescopes and instrumentation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/122901       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/122901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Bin-Long
LIU Qian
LIU Hong-Bang
ZHOU Xiao-Kang
CHEN Shi
GE Dong-Sheng
HUANG Wen-Qian
XIE Yi-Gang
ZHENG Yang-Heng
DONG Yang
ZHANG Qiang
JIAO Xin-Da
WANG Jing
LI Min
CHANG Jie
[1] Braem A, Cataldo G De, Davenport M, Mauro A D, Franco A, Gallas A, Hoedlmoser H, Martinengo P et al 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 553 187
[2] Mormann D, Breskin A, Chechik R and Bloch D 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 516 315
[3] Chechik R, Breskin A, Shalem C and Mormann D 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 535 303
[4] Breskin A, Alon R, Cortesi M, Chechik R, Miyamoto J, Dangendorf V, Maia J and Santos J M F Dos 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 598 107
[5] Shalem C, Chechik R, Breskin A and Michaeli K 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 558 475
[6] Alexeev M, Birsa R, Bradamante F, Bressan A, Chiosso M, Ciliberti P, Croci G and Colantoni M L 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 617 396
[7] Triloki, Dutta B and Singh B K 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 695 279
[8] Schultz G et al 1977 Rev. Phys. Appl. 12 67
[9] Liu H B et al 2012 J. Instrum. 7 C06001
[10] Anderson W, Azmoun B, Cherlin A, Chi C Y, Citron Z, Connors M, Dubey A, Durham J M et al 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 646 35
[11] Bachmann S, Bressan A, Ropelewski L, Sauli F, Sharma A and Mormann D 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 438 376
[12] Alexeev M, Birsa R, Bradamante F, Bressan A, Chiosso M, Ciliberti P, Torre S D, Dasgupta S et al 2013 J. Instrum. 8 P01021
[13] Ansys Inc. 2010 Ansys version 12. 0 electromagnetics, (Canonsburg USA)
[14] Veenhof R 2009 J. Instrum. 4 P12017
[15] Schindler H, Biagi S F and Veenhof R 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 624 78
[16] ?ahin ?, Tapan ?, ?zmutlu E N and Veenhof R 2010 J. Instrum. 5 P05002
[17] Zhou X K, Liu Q, Chen S et al 2014 Chin. Phys. Lett. 31 032901
Related articles from Frontiers Journals
[1] WANG Xiao-Dong, ZHANG Jun-Wei, HU Bi-Tao, YANG He-Run, DUAN Li-Min, LU Chen-Gui, HU Rong-Jiang, ZHANG Chun-Hui, ZHOU Jian-Rong, YANG Lei, AN Lv-Xing, LUO Wen. Comparison of Experiment and Simulation of the triple GEM-Based Fast Neutron Detector[J]. Chin. Phys. Lett., 2015, 32(03): 122901
[2] ZHOU Xiao-Kang, LIU Qian, CHEN Shi, HUANG Wen-Qian, WANG Bin-Long, ZHANG Yong-Dong, GE Dong-Sheng, LIU Hong-Bang, ZHENG Yang-Heng, XIE Yi-Gang, DONG Yang, ZHANG Qiang, CHANG Jie, WANG Jing, LI Min, ZHOU Yan. Study of Thick Gaseous Electron Multipliers Gain Stability and Some Influencing Factors[J]. Chin. Phys. Lett., 2014, 31(03): 122901
[3] PANG Hong-Chao, LIU Hong-Bang, **, CHEN Shi, MIN Jian, ZHENG Yang-Heng, XIE Yi-Gang, TANG Ai-Song, YANG Ya-Dan, DONG Yang, LI Min. A Cosmic-Ray Muon Hodoscope Based on Up-down THGEM Detectors[J]. Chin. Phys. Lett., 2012, 29(1): 122901
[4] ZHANG Guo-Hui**, LIU Xiang, LIU Jia-Ming, XUE Zhi-Hua, WU Hao, CHEN Jin-Xiang . Measurement of Cross Sections for the 10B(n,α)7Li Reaction at 4.0 and 5.0MeV Using an Asymmetrical Twin Gridded Ionization Chamber[J]. Chin. Phys. Lett., 2011, 28(8): 122901
[5] ZHANG Jia-Guo, ZHANG Guo-Hui, CHEN Jin-Xiang. Measurement of Electron-Drift Velocity in Ar+CH4 Mixtures Using Double-Grid Method[J]. Chin. Phys. Lett., 2009, 26(11): 122901
[6] GUAN Yong-Jing, RUAN Xiang-Dong, HE Ming, WANG Hui-Juan, LI Guo-Qiang, WU Shao-Yong, DONG Ke-Jun, LIN Min, JIANG Shan. Isobaric Identification Using Gas-Filled Time-of-Flight Measurements in an Accelerator Mass Spectrometry[J]. Chin. Phys. Lett., 2005, 22(7): 122901
Viewed
Full text


Abstract