Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 124202    DOI: 10.1088/0256-307X/29/12/124202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Ultrastable Fiber-Based Time-Domain Balanced Homodyne Detector for Quantum Communication
WANG Xu-Yang, BAI Zeng-Liang, DU Peng-Yan, LI Yong-Min**, PENG Kun-Chi
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
Cite this article:   
WANG Xu-Yang, BAI Zeng-Liang, DU Peng-Yan et al  2012 Chin. Phys. Lett. 29 124202
Download: PDF(2226KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an ultrastable fiber-based time-domain balanced homodyne detector which can be used for precise characterization of pulsed quantum light fields. A variable optical attenuator based on bending the fiber is utilized to compensate for the different quantum efficiencies of the photodiodes precisely, and a common mode rejection ratio of above 76 dB is achieved. The detector has a gain of 3.2 μV per photon and a signal-to-noise ratio above 20 dB. Optical pulses with repetition rates up to 2 MHz can be measured with a detection efficiency of 66%. The stability of the detector is analyzed via an Allan variance measurement and the detector exhibits superior stability which enables a 100-s window for measurement without calibration.
Received: 25 June 2012      Published: 04 March 2013
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/124202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/124202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xu-Yang
BAI Zeng-Liang
DU Peng-Yan
LI Yong-Min
PENG Kun-Chi
[1] Grosshans F et al 2003 Nature 421 238
[2] Lodewyck J et al 2007 Phys. Rev. A 76 042305
[3] Qi B et al 2007 Phys. Rev. A 76 052323
[4] Fossier S et al 2009 New J. Phys. 11 045023
[5] Smithey D T et al 1993 Phys. Rev. Lett. 70 1244
[6] Breitenbach G, Schiller S and Mlynek J 1997 Nature 387 471
[7] Zavatta A, Viciani S and Bellini M 2006 Laser Phys. Lett. 3 3
[8] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299
[9] Hansen H et al 2001 Opt. Lett. 26 1714
[10] Wenger J, Brouri R T and Grangier P 2004 Opt. Lett. 29 1267
[11] Legre M, Zbinden H and Gisin N 2006 Quantum Inf. Comput. 6 326
[12] Chi Y M et al 2011 New J. Phys. 13 013003
[13] Zavatta A et al 2002 J. Opt. Soc. Am. B 19 1189
[14] Okubo R et al 2008 Opt. Lett. 33 1458
[15] Haderka O et al 2009 Appl. Opt. 48 2884
[16] Cooper M, Soller C and Smith B J 2011 arXiv: 1112.0875v1[quant-ph]
[17] Lodewyck J et al 2005 Phys. Rev. A 72 050303(R)
[18] Snyder J J 1981 Proc. 35th Annual Symposium on Frequency Control (Philadelphia, Pennsylvania 27–29 May 1981) p 464
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 124202
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 124202
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 124202
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 124202
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 124202
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 124202
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 124202
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 124202
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 124202
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 124202
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 124202
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 124202
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 124202
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 124202
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 124202
Viewed
Full text


Abstract